Что обеспечивает функция устойчивости системы. Влияние параметров САУ на её устойчивость

Под устойчивостью или стабильностью системы в широком смысле понимается свойство системы возвращаться в некоторое установившееся состояние или режим после нарушения какими либо внешними или внутренними факторами.

Система может характеризоваться весьма сложным поведением, непрерывно изменятся, но при этом некоторые ее параметры могут сохранять постоянные значения. В таком случае можно говорить об устойчивости системы относительно именно этих параметров.

Например, исследуя процессы в колебательном контуре, было установлено, что не зависимо от начальных значений напряжения и тока, независимо от того имеет ли место затухающие или незатухающие колебания, частота их в данном контуре всегда остается неизменной и определяется параметрами контура. Это дает права назвать колебательный контор системой устойчивой относительно частоты собственных колебаний.

По значению к понятию устойчивости близки понятии равновесия и стационарности (состояния равновесия, стационарный процесс). Однако эти понятия имеет более узкий, частный смысл. Таким образом, более узким, частным является и употребляемое иногда понятие устойчивости системы как способности её стремиться из различных начальных состояний к некоторому равновесному, стационарному состоянию.

Основным содержанием теории устойчивости является: исследования влияния возмущающих воздействий на поведения системы, при этом под возмущающими факторами понимают силы обычно неизвестные заранее, которые как следствие своей неопределенности, так и в следствие относительной малости по сравнению с основными силами, не учитываются при описании движений системы.

Другим примером устойчивости поведения системы является ее цикличности.

Цикличным поведением называется такое, когда система при отсутствии возмущений периодически многократно проходит одну и ту же последовательность состояний – устойчивое множество состояний.

Относительно некоторого возмущения действующего на систему, её состояние равновесия (или цикл) может характеризоваться несколькими типами устойчивости.

Если система возвращается в состояние равновесия при любых возможных воздействиях на неё (при любых возмущениях), то равновесия называют абсолютно устойчивым . Например, маятник.

Если система, при возмущениях возвращается в состояние равновесия только из некоторой области, то равновесие называют устойчивой относительно этой области . Здесь примером может быть кирпич, который если чуть-чуть наклонить, то вернется в свое состояние, а если сильно наклонить, то упадет.

Если после воздействия на систему она сохраняет новое состояние, вызванное этим воздействием, то систему называют безразлично устойчивой . Простейшим примером является однородный круглый диск, укрепленный на оси, проходящий через его центр.

Во всех остальных случаях, система является не устойчивой.

В сложных кибернетических системах в зависимости от характера исследуемых задач и типа возмущения предлагается применять различные методы определения устойчивости (критерии устойчивости). Одним из таких методов, получившее широкое распространение, является определение устойчивости предложенным ученым Ляпуновым: предполагается, что некоторый объект (система автоматического управления) описывается системой дифференциальных уравнений.

Устойчивость поведения систем, как правило, является положительным свойством, обеспечивающим их нормальное целенаправленное функционирования и сохранения целостности в экстремальных условиях. Однако, в ряде случаев, устойчивость отражает инертность, косность системы, ограничивающую возможность управления ими.

Устойчивость является свойством всей системы в целом, а не в какой либо отдельной её части. Система, состоящая из нескольких устойчивых подсистем, может оказаться неустойчивой и наоборот: при объединения некоторого количества неустойчивых подсистем, может возникнуть устойчивая система, в зависимости от способа такого объединения.

С понятием устойчивости тесно связано понятие гомеостаза или гомеостазиса (от греч гомео – равный, стазис – состояние), применяемое вначале в биологии, где оно обозначало поддержание постоянства существенных параметров организма (температура, давление, состава крови и т.д.). В настоящее время гомеостазисом называют свойство системы, при взаимодействии со внешней средой, сохранять существенные параметры в некоторых заданных пределах.

Для иллюстрации явления гомеостазиса английским нейрофизиологом У.Р. Эшби была построена аналоговая модель, названая им гомеостатом, содержащая 4 вращающиеся магнита, изменяющих при своем вращении сопротивления 4ьох жидкостных потенциометра.

Экономические системы и их особенности

Экономические системы представляет частный случай сложных динамических систем.

Экономическую систему определяют как функциональную подсистему общества, в которой осуществляется производство, распределение и потребление материальных благ. Схематично можно представить следующим образом:

В результате приложения общественного труда происходит преобразование природных ресурсов в материальные блага, потребляемые обществом, таким образом, общество по отношению к экономической подсистемы преобразования ресурсов (производственной системе) выступает с одной стороны как ассоциация производителей, с другой как ассоциация потребителей, формирующее определенные требования к материальным благам – их ассортименту, количеству и качеству.

Результат сравнения параметров общественной потребностей и фактически произведенных материальных благ, то есть разность между общественной потребностью и возможность её удовлетворения представляет стимул развития экономики, реализуемой в процессе управления. Однако, в процессе управления реализуется не только простые результаты такого сравнения, но и цели вырабатываемые обществом и определяемые рядом социально-политических факторов, свойственных той или иной общественной формации и в первую очередь в форме собственности на средства производства.

Экономические системы характеризуются рядом следующих особенностей:

Они отличаются большой сложностью, обусловленное в наличие множественных и достаточно сильных материальных и информационных связей между подсистемами и элементами системы

Для экономических систем характерны непрерывное, динамичное и в макро-масштабах не повторяющие развития по сравнению, например, с биологическими системами. Так если виды животных или растений в процессе эволюции меняются за период 1000, 10000 и более лет, то способы производства, экономические отношения могут претерпевать существенные и даже неоднократные изменения в течение жизни одного поколения людей.

Экономические системы испытывают непрерывное воздействие природных факторов и общества, при чем эти воздействия имеют в основном недетерминированный, а стохастический характер. Так распределение природных ресурсов, состояние погоды и другие факторы внешней среды поддаются прогнозированию лишь с некоторой степени достоверности. В свою очередь и определение потребностей общества в материальных благах так же поддаются лишь статистические оценки. Это обусловлено и сложностью и изменчивостью потребностей и вкусов отдельных членов общества, влиянием моды, и статистической природной демографией, определяющие количественные потребности общества и размеры трудовых ресурсов. Неопределенный в значительной степени характер носит так же прогнозы развития науки, возможности появления тех или иных открытий, изобретений и усовершенствований, эффективности внедрения новой техники и технологий в производство.

Одной из важнейших функций экономических систем является производство и соответственно одной из основных подсистем является производственная система.

В производственной системе осуществляется преобразование материально-вещественных компонентов – природных ресурсов в материальные блага, предназначенные для общественного потребления.

В производственной системе и соответственно производственно-технологической структуре характерны достаточно четко выражены иерархические свойства. При описании ее иерархической структуры нужно учитывать как вертикальные (отраслевые), так и горизонтальные (региональные) аспекты формирования структуры, при этом первичными элементами, то есть звеньями самого низкого уровня иерархии являются элементарные технологические операции.

Дальнейшее их рассмотрение не имеет социально-экономического смысла так как оно уже приводит в область изучения физиологических свойств. На более высоких уровнях иерархии находятся цеха, предприятия, производственные комплексы, отрасли и т.д. Подсистемы иерархической производственной системы связаны между собой в первую очередь материальными потоками (сырье, заготовки, полуфабрикаты, комплектующие изделия, готовые изделия и т.п.).

При этом каждому материальному потоку можно сопоставить определенный информационный поток. Так от производственного подразделения низшего уровня иерархии передается информация о производственных возможностях и их реализации в плановые органы более высшего порядка – объединения, отрасли которые в свою очередь передают ее в государственные органы управления.

Последние пользуясь связями сверху вниз передают административно-директивные задания и определённые параметры экономического функционирование.

На ряду с вопросами структуры производственно-экономических систем важную роль играют проблемы их инфраструктуры. Под инфраструктурой в экономике понимают совокупность отраслей и видов деятельности который является внешним по отношению к основному производственному циклу обслуживает производственную и непроизводственную сферу экономики обеспечивая тем самым нормальное функционирование. Основных отраслей материального производства и развития производительных сил.

К инфраструктуре относят:

Транспорт и связь

Научные учреждения и учебные заведения

Коммунальные хозяйства

Учреждения культуры т.д.

Особенности экономических систем выделяют особенности производственной деятельности предприятия к относящихся к данной системы. Так особенности аграрной экономической системы вытекают из особенности сельскохозяйственного производства. Одной из особенностью сельхоз производства является то, что получение продукции, осуществляется здесь единственным путем, то есть биологического синтеза с помощью растений, выращиваемых в естественном грунте.

В отличие от таких средств производства, как машины, строения, подвергающиеся износу и требующие замены такие производственные ресурсы, как уголь, нефть, руда, запасы которых истощаются, земля при правильном ведении хозяйства, наоборот может превышать свое плодородие. Тоже можно отнести и к природным ресурсам: лесам, животный мир, рыбные запасы и т.д.

Ещё одной особенностью сельхоз производства является его цикличность, при чем циклы эти могут быть весьма длительными: земледелии от года до 2ух и более лет, в садоводстве и животноводстве более десятка лет. В течение цикла производства имеет место ситуации, когда интервалы времени, необходимые для превращения исходного материала в готовый продукт, не совпадает с интервалами времени, требующие воздействие труда. Так основной процесс роста и созревание зерновых культур происходит почти без приложения труда за счет естественных воздействий окружающей среды – атмосферной влаги и солнечной радиации. А так как эти факторы оказываются от года году весьма не постоянными и даже не поддаются долгосрочному прогнозированию, то тем самым выносится стохастичность и не возможность точного планирования в природу сельхоз производства.

Существенно отличается технологичные процессы промышленного и сельхоз производства.

В промышленном производстве сырье, предметы труда заключают в себе, как правило всю массу производимого продукта, так например, для изготовления автомобиля необходимо поставить на завод соответствующее количество метала, заготовок и других материала. Между тем исходным материалом для сельхоз производства является лишь значительно меньше по массе исходного материала, элементы, например семена, которые содержат только зародыши будущего биологического объекта и некоторое минимальное количество питательных веществ, необходимого для начальной стадии их развития. В дальнейшем масса производимого продукта создается в результате естественного роста и развития растений и животных, и усвоения нужных ингредиентов из внешней среды (почва, воздух, удобрение и т.д.). Это особенность сельхоз производства является его ещё одним фактором стохастичности.

Все перечисленные основные факторы и ряд других, менее существенных затрудняет достижение в сельском хозяйстве той ритмичности, организованности, высокой эффективности использования современной техники и средств автоматизации.

PAGE \* MERGEFORMAT 14

Лекция №4

Устойчивость САУ

Свойство системы приходить в исходное состояние после снятия возмущения называется устойчивостью.

Определение.

Кривые 1 и 2 характеризуют устойчивую систему, кривые 3 и 4 характеризуют системы неустойчивые.ε

Системы 5 и 6 на границе устойчивости  5 - нейтральная система, 6 - колебательная граница устойчивости.

Пусть дифференциальное уравнение САУ в операторной форме имеет вид 

Тогда решение дифференциального уравнения (движение системы) состоит из двух частей  Вынужденное движение того же вида что и входное воздействие.

При отсутствии кратных корней где С i -постоянные интегрирования, определяемые из начальных условий,

 1 ,  2 …,  n – корни характеристического уравнения

Расположение корней характеристического

уравнения системы на комплексной плоскости

Корни характеристического уравнения не зависят ни от вида возмущения, ни от

начальных условий, а определяются только коэффициентами а 0 , а 1 , а 2 ,…,а n , то есть параметрами и структурой системы.

1-корень действительный, больше нуля;

2-корень действительный, меньше нуля;

3-корень равен нулю;

4-два нулевых корня;

5-два комплексных сопряженных корня, действительная часть которых

Положительна;

6-два комплексных сопряженных корня, действительная часть которых отрицательная;

7-два мнимых сопряженных корня.

Методы анализа устойчивости :

  1. Прямые (основаны на решении дифференциальных уравнений);
  2. Косвенные (критерии устойчивости).

Теоремы А.М. Ляпунова.

Теорема 1.

Теорема 2.

Примечания:

  1. Если среди корней характеристического уравнения имеется два и более нулевых корня, то система неустойчива.
  2. Если один корень нулевой, а все остальные находятся в левой полуплоскости, то система нейтральна.
  3. Если 2 корня мнимые сопряженные, а все остальные в левой полуплоскости, то система на колебательной границе устойчивости.

Критерии устойчивости САУ.

Критерий устойчивости - это правило, позволяющее выяснить устойчивость системы без вычисления корней характеристического уравнения.

В 1877г. Раус установил:

1. Критерий устойчивости Гурвица

Критерий разработан в 1895г.

Пусть определено характеристическое уравнение замкнутой системы: уравнение приводим к виду, чтобы a 0 >0.

Составим главный определитель Гурвица по следующему правилу:

по главной диагонали записываются коэффициенты уравнения, начиная со второго по последний, столбцы вверх от диагонали заполняются коэффициентами с возрастающими индексами, а столбцы вниз от диагонали - коэффициентами с убывающими индексами. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексами меньше 0 и больше n пишут нуль.

Выделим диагональные миноры или простейшие определители в главном определителе Гурвица:

Формулировка критерия.

Для систем выше второго порядка кроме положительности всех коэффициентов характеристического уравнения необходимо выполнение следующих неравенств:

  1. Для систем третьего порядка:
  2. Для систем четвертого порядка:
  3. Для систем пятого порядка:
  1. Для систем шестого порядка:

Пример. Дано характеристическое уравнение исследовать устойчивость системы по Гурвицу.

Для устойчивых систем необходимо и

2. Критерий Рауса

Критерий Рауса используется при исследовании устойчивости систем высокого порядка.

Формулировка критерия:

Таблица Рауса.

Алгоритм заполнения таблицы: в первой и второй строках записываются коэффициенты уравнения с четными и нечетными индексами; элементы остальных строк вычисляются по следующему правилу:

Достоинство критерия: можно исследовать устойчивость систем любого порядка.

2. Критерий устойчивости Найквиста

Принцип аргумента

В основе частотных методов лежит принцип аргумента.

Проведем анализ свойств многочлена вида:

Где  i - корни уравнения

На комплексной плоскости каждому корню соответствует вполне определенная точка. Геометрически каждый корень  i можно изобразить в виде вектора, проведенного из начала координат в точку  i : |  i | - длина вектора, arg  i - угол между вектором и положительным направлением оси абсцисс. Отобразим D(p) в пространство Фурье, тогда где j  -  i - элементарный вектор.

Концы элементарных векторов находятся на мнимой оси.

Модуль вектора, а аргумент (фаза)

Направление вращения вектора против часовой стрелки принимают за ПОЛОЖИТЕЛЬНОЕ. Тогда при изменении  от до каждый элементарный вектор (j  -  i ) повернется на угол +  , если  i лежит в левой полуплоскости.

Пусть D ( )=0 имеет m корней в правой полуплоскости и n - m корней в левой, тогда при возрастании от до изменение аргумента вектора D(j ) (угол поворота D(j ), равный сумме изменений аргументов элементарных векторов) будет

Принцип аргумента:

Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.

Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:

  1. Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
  2. Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
  3. Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
  4. Удобно определять запасы устойчивости.

1. Система, устойчивая в разомкнутом состоянии

Пусть введем вспомогательную функцию заменим p  j  , тогда

Согласно принципа аргумента изменение аргумента D(j  ) и D з (j  ) при 0<  <  равно Тогда то есть годограф W 1 (j  ) не должен охватывать начало координат.

Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j 0), а вместо вспомогательной функции W 1 (j  ) используем АФХ разомкнутой системы W (j  ).

Формулировка критерия №1

Примеры.

Отметим, что разность числа положительных и отрицательных переходов АФХ левее точки (-1, j 0) равна нулю.

2. Система, имеющая полюсы на мнимой оси в разомкнутом состоянии

Для анализа устойчивости системы АФХ дополняют окружностью бесконечно большого радиуса при  0 против часовой стрелки до положительной вещественной полуоси при нулевых полюсах, а в случае чисто мнимых корней - полуокружностью по часовой стрелке в точке разрыва непрерывности АФХ.

Формулировка критерия №2

  1. Система с неустойчивой разомкнутой цепью

Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:

  1. Следствием наличия неустойчивых звеньев;
  2. Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.

X отя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи .

Пусть характеристический многочлен D (p ) разомкнутой системы имеет m корней с положительной вещественной частью.

Тогда

Вспомогательная функция при замене p  j  согласно принципа аргумента для устойчивых замкнутых систем должна иметь следующее изменение аргумента при

Формулировка критерия №3

Формулировка Я.З. Цыпкина

Критерий Найквиста для ЛЧХ

Примечание: фазовая характеристика ЛЧХ астатических систем дополняется монотонным участком +  /2 при  0.

Пример 1.

Здесь m =0  система устойчива, но при уменьшении k система может быть неустойчива, поэтому такие системы называются условно-устойчивыми.

Пример 2.

20 lgk

1/ T 0

Здесь

При любых k система неустойчива. Такие системы называются структурно-неустойчивыми.

Пример 3.

АФХ охватывает точку с координатами (-1, j 0) 1/2 раза, следовательно замкнутая система устойчива.

Пример 4.

при  0 АФХ имеет разрыв, и поэтому ее нужно дополнить дугой бесконечно большого радиуса от отрицательной вещественной полуоси.

На участке от -1 до -  имеется один положительный переход и полтора отрицательных. Разность между положительными и отрицательными переходами равна -1/2, а для устойчивости замкнутой системы требуется +1/2, так как характеристический полином разомкнутой системы имеет один положительный корень - система неустойчива.

Абсолютно-устойчивой называют систему, которая сохраняет устойчивость при любом уменьшении коэффициента усиления разомкнутой цепи, иначе система условно- устойчивая.

Системы, которые можно сделать устойчивыми путём изменения их параметров, называются структурно-устойчивыми , иначе – структурно-неустойчивыми.

Запасы устойчивости

Для нормального функционирования всякая САР должна быть удалена от границы устойчивости и иметь достаточный запас устойчивости. Необходимость этого обусловлена следующими причинами:

  1. Уравнения элементов САР, как правило, идеализированы, при их составлении не учитывают второстепенные факторы;
  2. При линеаризации уравнений погрешности приближения дополнительно увеличиваются;
  3. Параметры элементов определяют с некоторой погрешностью;
  4. Параметры однотипных элементов имеют технологический разброс;
  5. При эксплуатации параметры элементов изменяются вследствие старения.

В практике инженерных расчетов наиболее широко используют определение запаса устойчивости на основе критерия НАЙКВИСТА, по удалению АФХ разомкнутой системы от критической точки с координатами (-1, j 0), что оценивают двумя показателями: запасом устойчивости по фазе и запасом устойчивости по модулю (по амплитуде) H .

Для того чтобы САР имела запасы устойчивости не менее  и H , АФХ ее разомкнутой цепи при удовлетворении критерия устойчивости не должна заходить в часть кольца, заштрихованного на рис. 1, где H определяется соотношением

Если устойчивость определяется по ЛЧХ условно-устойчивых систем, то для обеспечения запасов устойчивости не менее  и h необходимо, чтобы:

а) при h  L  - h фазо-частотная характеристика удовлетворяла неравенствам θ > -180  +  или θ < -180  -  , т.е. не заходила в заштрихованную область 1 на рис. 2;

б) при -180  +   θ  -180  -  амплитудно-частотная характеристика удовлетворяла неравенствам L < - h или L > h , т.е. не заходила в заштрихованные области 2" и 2"" на рис. 2.

Для абсолютно устойчивой системы запасы устойчивости  и h определяют так, как показано на рис. 3:

1. Запас по фазе

  1. Запас по модулю h =- L (ω -π ), где ω -π – частота, при которой θ=-180 ˚ .

Необходимые значения запасов устойчивости зависит от класса САР и требований к качеству регулирования. Ориентировочно должно быть  =30  60  и h =6  20дБ.

Минимально допустимые запасы устойчивости по амплитуде должны быть не менее 6дБ (то есть передаточный коэффициент разомкнутой системы в два раза меньше критического), а по фазе не менее 25  30  .

Устойчивость системы со звеном чистого запаздывания

Если АФХ разомкнутой системы проходит через точку (-1, j 0), то система на грани устойчивости.

Систему с чистым запаздыванием можно сделать устойчивой, если в схему включить безынерционное звено с передаточным коэффициентом, меньшим 1. Возможны и другие виды корректирующих устройств.

Структурно-устойчивые и структурно-неустойчивые системы

Один из способов изменения качества системы (в смысле устойчивости) – это изменить передаточный коэффициент разомкнутой системы.

При изменении k L ( ) поднимется либо опускается. Если k увеличивать, L ( ) поднимается и  ср будет возрастать, а система останется неустойчивой. Если k уменьшать, то систему можно сделать устойчивой. Это один из способов коррекции системы.

Системы, которые можно сделать устойчивыми путем изменения параметров системы, называются СТРУКТУРНО-УСТОЙЧИВЫМИ.

Для этих систем есть критический передаточный коэффициент разомкнутой системы. K крит. – это такой передаточный коэффициент, когда система на грани устойчивости.

Существуют системы СТРУКТУРНО-НЕУСТОЙЧИВЫЕ – это такие системы, которые невозможно сделать устойчивыми изменением параметров системы, а требуется для устойчивости изменять структуру системы.

Пример.

Рассмотрим три случая:

  1. Пусть

Тогда

Проверим работу системы на устойчивость.

Δ = а 3 Δ 2 >0.

Для определения k рс.кр. приравняем нулю  2 .

Тогда

При при

Рассматриваемая система СТРУКТУРНО-УСТОЙЧИВАЯ, так как ее можно стабилизировать путем изменения параметров звеньев.

  1. Пусть и те же, что в первом случае.

Теперь Статической ошибки по каналу управления нет.

Условия устойчивости по Гурвицу:

Пусть  2 =0, тогда если то система неустойчивая.

Данная система с астатизмом 1-го порядка СТРУКТУРНО-УСТОЙЧИВАЯ.

  1. Пусть

Всегда система неустойчива. Эта система СТРУКТУРНО-НЕУСТОЙЧИВАЯ.

Федеральное Агентство Железнодорожного транспорта

Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Петербургский государственный университет путей сообщения

Кафедра «Электрическая тяга»

Якушев А.Я., Викулов И.П., Цаплин А.Е.

Влияние параметров САу

На устойчивость и качество регулирования

Методические указания к лабораторной работе

Санкт-Петербург

Цель работы - изучение основных параметров а также их соотношений, определяющих устойчивость и динамические свойства систем автоматического управления (САУ), характеризуемые видом переходных процессов изменения выходной переменной при возмущающих воздействиях.

Структурная схема САУ

Анализ динамических свойств системы автоматического управления обычно выполняют аналитически по структурной схеме или используя математическую модель системы. Оценку динамических свойств производят по реакции выходной переменной y(t) в виде переходной функции системына ступенчатое изменение задающего Dg×1(t) или возмущающего DZ×1(t) воздействий.

Структурной называют схему, составленную из операторных передаточных функций звеньев направленного действия, образующих систему автоматического управления. Основой для составления структурной схемы служит функциональная схема САУ (рис.1, а) и динамические характеристики составляющих ее элементов. Динамические характеристики функциональных элементов в структурной схеме представлены операторными передаточными функциями (рис. 1,б). Задающее воздействие g(t), возмущающее воздействие Z(t), выходная переменная y(t) на структурной схеме представлены операторными изображениями их конечных изменений, Dg(p), DZ(p), DY(р) относительноустановившихся уровней. Изменение выходной переменной DY(р) определяется операторными передаточными функциями замкнутой системы по задающему Dg(р) ивозмущающему DZ(р) воздействиям.



Динамические характеристики функциональных элементов САУ в большинстве случаев могут быть представлены апериодическими звеньями 1-го порядка, а также безынерционными усилительными звеньями. Характеристики более сложных функциональных элементов могут быть представлены двумя или несколькими звеньями.

В работе производится исследование переходных процессов автоматического регулирования при возмущающих воздействиях DZ=1(t) применительно к простейшей системе автоматического управления. На структурной схеме (рис. 1,б) функциональные элементы исследуемой системы: объект регулирования, исполнительное устройство, элемент обратной связи представлены апериодическими звеньями 1-го порядка. Динамические параметры функциональных элементов имеют обозначения: Т ор , Т иу , Т ос - постоянные времени, , , - коэффициенты усиления. В исследуемой системе применен регулятор с пропорциональным законом регулирования, характеризуемым коэффициентом усиления . Таким образом, анализ влияния параметров системы автоматического управления на её устойчивость и форму переходного процесса изменения выходной переменной производится применительно к системе 3-го порядка, составленной из усилительного звена и апериодических звеньев 1-го порядка.

Влияние параметров САУ на её устойчивость.

Устойчивостью системы автоматического управления называют способность системы при воздействиях на неё возмущающих факторов приходить с течением времени к равновесному состоянию. Различают устойчивость статическую и динамическую.

Статическая устойчивостьобеспечивается наличием отрицательной главной обратной связи и отсутствием местных положительных обратных связей в структурной схеме системы автоматического управления. Поэтому ее называют схемной устойчивостью. Аналитические условия обеспечения статической устойчивости определяется положительностью всех коэффициентов общего дифференциального или характеристического уравнений системы. Это условие называют необходимым условием устойчивости.

Характеристическое уравнение представляет собой алгебраическое уравнение, в котором показатели степени независимой переменной соответствуют порядку производных выходной переменной общего дифференциального уравнения системы:

Коэффициенты слагаемых характеристического уравнения равны коэффициентам при производных выходной переменной общего дифференциального уравнения системы автоматического управления:

Характеристическое уравнение может быть получено из полинома знаменателя передаточной функции замкнутой системы при использовании для анализа структурной схемы САУ .

Для исследуемой системы автоматического управления, структурная схема которой показана на рис. 1,б, передаточная функция замкнутой системы по возмущающему воздействию DZ(р) имеет следующий вид:

(1)

В выражении (1) обозначен К 0 общий коэффициент усиления, равный произведению коэффициентов усиления всех звеньев, входящих в замкнутый контур структурной схемы САУ:

. (2)

Для получения характеристического уравнения системы надо приравнять нулю знаменатель передаточной функции (1):

В результате преобразования получено характеристическое уравнение системы автоматического управления, представляющее собой алгебраическое уравнение третьей степени:

Коэффициенты этого уравнения определяются следующими выражениями:

. (4)

Из соотношений формул (4) видно, что все коэффициенты характеристического уравнения (3) положительны, следовательно, обеспечено необходимое условие устойчивости, т.е. исследуемая система автоматического управления статически устойчива.

Для оценки динамической устойчивости разработаны способы, определяющие достаточные условия, называемые критериями устойчивости. Одним из них является алгебраический критерий Гурвица. Согласно критерию устойчивости Гурвица условие динамической устойчивости системы третьего порядка определяется соотношением коэффициентов характеристического уравнения (3) :

Из соотношения (5) следует, что система будет устойчива, если общий коэффициент усиления системы , входящий в выражение коэффициента а 3 характеристического уравнения системы, будет меньше величины:

.

После подстановки в это неравенство выражений для коэффициентов (4) характеристического уравнения и некоторых преобразований получено соотношение для общего коэффициента усиления К 0 устойчивой системы 3-го порядка:

. (6)

Критическим называют общий коэффициент усиления К 0кр, определяемый для системы 3-го порядка равенством (6), при котором система автоматического управления находится в граничном состоянии устойчивости. Из соотношения (6) следует, что при равенстве постоянных времени апериодических звеньев Т ор иу ос, определяется наименьшее значение критического коэффициента усиления системы 3- го порядка К 0кр = 8.

При изменении соотношений постоянных времени критический коэффициент усиления системы возрастает, например, при и , К 0кр = 16,8.

Работоспособность системы автоматического управления определяется не только устойчивостью, но и приемлемым характером переходного процесса выходной переменной при возмущающих воздействиях на систему. Практически величина общего коэффициента усиления К 0 , при которой характер и длительность переходного процесса будут удовлетворительными, должна быть примерно в 4…5раз меньше критического значения. Значит для приведённых в примерах соотношений постоянных времени общий коэффициент усиления реальной системы с удовлетворительным переходным процессом должен быть в пределах К 0 =2...4.

Устойчивость -это способность системы возвращаться к номинальному режиму, если она отклонилась по каким-то причинам от этого режима.

Требования к устойчивости обязательно для всех САУ.

Строгое определение устойчивости дано А.М. Ляпуновым в работе «Общая задача об устойчивости движения» (конец 19 века)

Пусть динамика системы описывается уравнением

y - выходная величина

x - входная величина

y ( i ) , x ( j ) - производные.

Предположим, что в этой системе существует номинальный режим работы у н (t ), который однозначно определяется номинальным входным воздействием х н (t ) и номинальными начальными условиями.

(2)

Так как номинальные начальные условия (2) на практике трудно выдержать, в системе существует «отклоненные» начальные условия.

(3)

Для номинального режима справедливо уравнение:

Отклоненным начальным условиям соответствует отклоненный режим.

Для отклоненного режима справедливо уравнение:

(6)

Вычтем из уравнения (5) уравнение (4), получим (7)

Введем определение.

Номинальный режим у н (t ) устойчив по Ляпунову , если при любых отклоненных начальных условиях (3) , достаточно мало отличающихся от номинальных номинальных начальных условий (2), при всех t > 0 будет мало z(t).

Если номинальный режим устойчив по Ляпунову и при этом предел
, то номинальный режим называетсяасимптотически устойчивым .

Если найдутся начальные условия (3), сколько угодно мало отличающиеся от номинальных начальных условий (2), и при этом
станет больше некоторой малой, наперед заданной величины, то номинальный режиму н (t ) называется неустойчивым.

Из (7) следует, что поведение z (t ) совершенно не зависит от вида входного воздействия х н (t ) .

Отсюда следует вывод: либо в системе (1) асимптотически устойчивы все номинальные режимы, соответствующие разным входным х н (t ), либо они все неустойчивы.

Поэтому можно говорить об устойчивости или неустойчивости системы, а не какого-либо одного ее режима.

Это важный вывод, сокращающий объем исследований САУ.

К сожалению, он справедлив только для линейных САУ.

Необходимые и достаточные условия устойчивости линейных сау.

Для асимптотической устойчивости линейных систем необходимо и достаточно чтобы все корни характеристического уравнения.

имела бы отрицательную вещественную часть.

Известно, что решение дифференциального уравнения с постоянными коэффициентами

1. Пусть корни вещественные .


При

- а это отклонение от номинального режима.

2. Если корни комплексные .

Необходимое условие устойчивости.

Для асимптотической устойчивости системы (1), (8) необходимо, чтобы все коэффициенты характеристического уравнения имели один знак.

Геометрическая трактовка условия устойчивости

Для устойчивости САУ необходимо и достаточно, чтобы корни характеристического уравнения были бы расположены в левой полуплоскости комплексной плоскости корней.

Критерии устойчивости САУ.

Это искусственные приемы, которые позволяют, не находя корней характерного уравнения, ответить на вопросы об устойчивости САУ, т.е. определять знаки вещественных частей корней.

Два вида критериев устойчивости:

1). Алгебраический критерий устойчивости (критерий устойчивости Гурвица).

Пусть заданно характерное уравнение.

Для устойчивости САУ необходимо и достаточно:

1). Чтобы все коэффициенты характеристического уравнения имели бы один знак -
(
система не устойчива)

2). Главный определитель Гурвица, составленный по определенному правилу, и все его диагонали миноры имели бы знак коэффициентов - были бы больше нуля.

Правила написания главного определения Гурвица.

1). По главной диагонали определителя располагаются все коэффициенты характеристического уравнения в порядке возрастания индексов, начиная с a 1 .

2). Места в определителе над главной диагональю заполняются коэффициентами характеристического уравнения в порядке возрастания индексов.

3). Места в определителе под главной диагональю заполняются коэффициентами характерного уравнения в порядке убывания индексов.

4). Места в определителе, где должны стоять коэффициенты с индексами больше n и меньше нуля, заполняются нулями

Таким образом, главный определитель Гурвица имеет вид:

A=
>0

САУ устойчива, если

1). Все коэффициенты характеристического уравнения больше нуля (0!)

,
, ….

2). Главный определитель Гурвица и все его диагональные миноры > 0.

,
,
, ….

Рассмотрим примеры.

1.

1.

2.

Для устойчивости САУ второго порядка необходимым и достаточным условием устойчивости является положительность коэффициентов характеристического уравнения.

1.
i=0…3

2.

Необходимым и достаточным условием устойчивости систем третьего порядка является положительность коэффициентов и произведение внутренних членов
должно быть больше произведения крайних членов
характеристического уравнения.

,


,
,

Есть еще алгебраический критерий Рауса. Это тот же критерий Гурвица, но организованный таким образом, что по нему удобно составлять программы для определения устойчивости.

Критерий устойчивости Вышнеградского для систем третьего порядка.

Вышнеградский И.А. предложил изображать границу устойчивости на так называемой плоскости параметров Вышнеградского.

Пусть имеем характеристическое уравнение третьей степени.

Преобразуем его с помощью подстановки:

Тогда оно примет вид:

A 1 и A 2 называются параметрами Вышнеградского (безразмерные величины), в плоскости которых строится граница устойчивости.

Применим к преобразованному уравнению критерий устойчивости Гурвица

или A 1 A 2 > 1

На границе устойчивости
.

Отсюда
- уравнение на границе устойчивости

По коэффициентам характеристического уравнения определяются А 1 и А 2 . Если точка оказалась ниже гиперболы – САУ устойчива, выше - неустойчива.

7.1. Понятие устойчивости САУ

Понятие устойчивости является важнейшей качественной оценкой динамических свойств САР. Устойчивость САР связана с характером её поведения после прекращения внешнего воздействия, которое может быть оценено решением дифференциального уравнения, описывающего работу системы. Общая теория устойчивости разработана А.М. Ляпуновым. Линейная система называется устойчивой, если ее выходная координата остается ограниченной при любых ограниченных по абсолютной величине входных воздействиях. Устойчивость линейной системы определяется ее характеристиками и не зависит от действующих воздействий.
В общем случае решение уравнения имеет вид: y(t)= y B (t) + y n (t)
где y B (t) - решение однородного уравнения (переходная или свободная составляющая); y n (t) - установившееся значение регулируемой величины (вынужденная составляющая) - решение уравнения с правой частью. Устойчивость работы системы определяется переходной составляющей. Если переходная составляющая процесса управления после прекращения внешнего воздействия стремится к нулю, то такая система является устойчивой. Другими словами устойчивость системы - это есть затухание ее переходных процессов.
Если свободная составляющая стремится к конечному значению или имеет вид гармонических колебаний с постоянной амплитудой, то система считается нейтральной. В том случае, если свободная составляющая неограниченно возрастает или имеет вид гармонических колебаний с возрастающей амплитудой, то система считается неустойчивой.
Оценка устойчивости производится на основе результатов исследования свободной составляющей, которая представляет собой решение однородного дифференциального уравнения (характеристического уравнения): D(p) = a 0 p n + a 1 p n-1 + ... + a n = 0 (4.1)
Переходная составляющая решения уравнения в общем виде y ni (t) = A i e α i t * sin(β i t + φ i) , где α i ± jβ i - корни характеристического уравнения; A i ,Φ i - постоянные.
При этом переходная составляющая с ростом времени стремится к нулю, если вещественные части корней α i отрицательны, в противном случае амплитуда колебаний переходной составляющей возрастает (рис.4.1).

Рис.4.1. Графики переходных составляющих

Пара мнимых корней (α i =0) характеристического уравнения позволяет получить переходную составляющую в виде автоколебаний с постоянной амплитудой:

Полученные корни характеристического уравнения могут быть представлены в виде точек на комплексной плоскости (рис.4.2.).


Рис.4.2. Расположение корней САУ на комплексной плоскости корней

Для устойчивых систем необходимо и достаточно, чтобы все корни характеристического уравнения лежали слева от мнимой оси комплексной плоскости корней. Если хотя бы один вещественный корень или пара комплексных сопряженных корней находится справа от мнимый оси, то система является неустойчивой. Если имеется нулевой корень или пара чисто мнимых корней, то система считается нейтральной (находящейся на границе устойчивости и неустойчивости). Таким образом, мнимая ось комплексной плоскости является границей устойчивости.

С целью упрощения анализа устойчивости систем разработаны ряд специальных методов, которые получили название критерии устойчивости. Критерии устойчивости делятся на две разновидности: алгебраические (критерий Гурвица ) и частотные (критерии Михайлова и Найквиста ). Алгебраические критерии являются аналитическими, а частотные - графоаналитическими. Критерии устойчивости позволяют также оценить влияние параметров системы на устойчивость.

Алгебраический критерий Гурвица находит широкое применение при анализе САР. Первоначально, из коэффициентов уравнения (4.1) составляется матрица главного определителя:

По диагонали матрицы от верхнего левого угла записываются по порядку все коэффициенты уравнения (4.1.), начиная с а1. Затем каждый столбец матрицы дополняется таким образом, чтобы вверх от диагонали индексы коэффициентов увеличивались, а вниз - уменьшались.
Для устойчивости системы необходимо и достаточно, чтобы при а0>0 все угловые определители (миноры) были также положительными, т.е.

и т.д.

Последний определитель Гурвица, как видно из приведенной выше матрицы, равен Δ n =a n *Δ n-1 . Поэтому его положительность сводится при Δ n-1 >0 к условию a n >0. Для систем первого и второго порядка критерий Гурвица сводится просто к положительности коэффициентов ai. Если определитель Δ n =0, то система находится на границе устойчивости. Из условия Δ n-1 =0 можно определить параметры, при которых система находится на границе устойчивости, например, критический коэффициент усиления разомкнутой САУ К кр.

Критерий Михайлова предполагает построение годографа на комплексной плоскости. Для построения годографа из характеристического уравнения замкнутой системы (4.1) путем подстановки p=jω получают аналитическое выражение вектора M(jω):
M(jω)=a 0 (jω) n +a 1 (jω) n-1 +...+a n (4.2)
Уравнение (4.2) является комплексным и может быть представлено в виде:

Построение годографа производится по уравнению вектора M(jω) при изменении часты от 0 до + . Оценка устойчивости системы осуществляется по углу поворота годографа при изменении частоты 0<ω< , т.е. по приращению Δ аргумента M(jω)

, (4.3)

где m - число правых корней характеристического полинома; n - порядок характеристического уравнения системы.
Тогда для устойчивости линейной системы n-го порядка необходимо и достаточно, чтобы изменение аргумента годографа M(jω) при изменении от 0 до + равнялось n , так как m=0 для обеспечения устойчивости системы.
Критерий Михайлова формулируется так: система устойчива, если годограф Михайлова M(jω) при изменении от 0 до + , начинаясь на положительной части действительной оси, обходил последовательно в положительном направлении (против часовой стрелки) n квадрантов и в n-м квадранте уходил в .
Если годограф начинается в нулевой точке комплексной плоскости или проходит через эту точку при определенной частоте, то система считается нейтральной. В этом случае P(ω) = 0 и Q(ω) = 0.
Из этих уравнений можно определить значения параметров, при которых система находится на границе устойчивости (критические значения). На рис.4.3 приведены годографы Михайлова для устойчивых и неустойчивых САУ.


Рис.4.3. Годографы Михайлова

Имеется вторая формулировка критерия Михайлова: для устойчивости системы необходимо и достаточно, чтобы корни уравнений P(ω) = 0 и Q(ω) = 0 перемежались (чередовались), т.е. годограф последовательно пересекал оси комплексной плоскости. Этой формулировкой удобно пользоваться для исследования устойчивости систем до пятого порядка включительно. По уравнению (4.3) можно определить количество правых корней в неустойчивых системах.

7.4. Частотный критерий устойчивости Найквиста

Критерий Найквиста - частотный критерий, позволяющий по виду амплитудно-фазовой частотной характеристики разомкнутой системы оценить устойчивость работы замкнутой системы. АФЧХ может быть получена экспериментально или аналитически. Аналитическое построение АФЧХ производится обычными методами. Критерий Найквиста формулируется по разному в зависимости от того, устойчива разомкнутая система или нет.
Если разомкнутая система устойчивая, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы при изменении частоты от 0 до не охватывала точку с координатами -I, j0. Если АФЧХ разомкнутой системы проходит через точку с координатами -I, j0, то система будет нейтральной. На рис.4.4 представлены АФЧХ разомкнутых статических систем. Критерий Найквиста позволяет наглядно проследить влияние изменения параметров передаточной функции на устойчивость системы.


Рис.4.4. АФЧХ разомкнутых САУ

АФЧХ астатической системы, начинаясь на вещественной положительной полуоси, при ω->0 дугой бесконечно большого радиуса перемещается на угол, равный -ν , где ν - порядок астатизма. На рис.4.5 изображена АФЧХ устойчивой в замкнутом состоянии астатической системы первого порядка.


Рис.4.5. АФЧХ астатической САУ первого порядка

Если разомкнутая система неустойчива, то для устойчивости замкнутой системы необходимо и достаточно, чтобы АФЧХ разомкнутой системы охватывала точку с координатами (-1, j0) и при изменении частоты от 0 до оборачивалась вокруг нее против часовой стрелки m раз, где m - число правых полюсов разомкнутой системы.
Существуют два класса САУ: абсолютно устойчивые и условно устойчивые. В первом классе систем только увеличение коэффициента усиления разомкнутой системы может привести к потере устойчивости, а условно устойчивая система может стать неустойчивой как при увеличении, так и при уменьшении коэффициента усиления.
Для абсолютно устойчивых систем вводится понятие запаса устойчивости по амплитуде (модулю) и запаса устойчивости по фазе. Запасы устойчивости определяют на частоте среза ω ср, на которой A(ω ср)=1.
Запас устойчивости по амплитуде задается некоторой величиной 1/а (рис.4.6), которая показывает, во сколько раз можно увеличить коэффициент усиления разомкнутой системы, чтобы САУ оказалась на границе устойчивости.


Рис.4.6. АФЧХ абсолютно устойчивой системы

Запас устойчивости по фазе задается некоторым углом φ (рис.4.6). В хорошо демпфированных системах запас устойчивости по амплитуде составляет примерно 6-20 дБ, что составляет 2÷10 в линейном масштабе, а запас по фазе от 30 до 60°.
Наиболее удобно для исследования устойчивости использовать построенные л.а.х. и л.ф.х., располагая их друг под другом так, чтобы оси ординат совмещались и выбирая одинаковые масштабы оси абсцисс (рис.4.7).


Рис.4.7. ЛЧХ абсолютно устойчивой системы

По ЛЧХ разомкнутой системы можно определить запасы устойчивости: запас по фазе φ зап отсчитывается по л.ф.х. на частоте среза ω ср и равен φ зап =π - φ(ω ср), а запас по амплитуде L зап соответствует значению л.а.х. на частоте, при которой л.ф.х. равна -π (рис.4.7). Если φ(ω ср)=-&pi, то система находится на границе устойчивости. Критический коэффициент усиления разомкнутой системы K кр определяется из выражения 20*lg(K кр)=20*lg(K раз) + L зап.
Критерием Найквиста удобно пользоваться для исследования устойчивости систем с запаздыванием. В этом случае строятся ЛЧХ разомкнутой САУ с запаздыванием W τ (jω) = W(jω) * e -jωτ . Логарифмическая частотная характеристика не изменяется, а л.ф.х. сдвигается вниз на величину -ω i τ, где ω i - значение частоты в конкретной точке. Критическое значение времени чистого запаздывания τ кр, при котором САУ будет на границе устойчивости, находится по формуле: .
Чтобы спроектировать систему с заданными показателями качества, строят запретную область вокруг точки с координатами (-1, j0), в которую не должна заходить АФЧХ разомкнутой системы, как показано на рис.4.8.

7.5. Логарифмический частотный критерий.

Логарифмический критерий – это частотный критерий, позволяющий судить об устойчивости замкнутой САУ по виду логарифмической характеристики разомкнутой системы. Этот критерий основан на однозначной связи ЛФЧХ и АФЧХ систем автоматического управления. При этом рассматриваются САУ, базирующиеся на использовании устойчивых разомкнутых систем. Кроме того, рассматриваются системы с астатизмом не выше второго порядка.

Как следует из критерия устойчивости Найквиста в устойчивых САУ фазовый сдвиг может достигать значения только при модулях комплексной передаточной функции, меньшем чем единица. Это позволяет легко определить устойчивость по виду ЛАЧХ и ЛФЧХ.

Формулировка критерия : для устойчивости системы в замкнутом состоянии необходимо и достаточно, чтобы в диапазоне частот, где ЛАЧХ разомкнутой системы больше нуля число переходов фазовой характеристики прямой снизу верх превышало на число переходов сверху вниз, где а – число корней характеристического уравнения разомкнутой системы, лежащих в правой полуплоскости.

В частном случае для устойчивой разомкнутой системы (а=0) необходимым и достаточным условием замкнутой системы является необходимость выполнения следующего условия. В диапазоне частот, где , фазовая частотная характеристика не должна пересекать прямой , или пересекать ее одинаковое число раз снизу вверх и сверху вниз.

Рис. 6. ЛФЧХ устойчивой и неустойчивой САУ

Критическим значением коэффициента преобразования называется такое его значение, при котором АФЧХ проходит через точку (-1, j0) и система находится на границе устойчивости.

Запасом по модулю называется величина в децибеллах, на которую нужно изменить коэффициент преобразования САУ, чтобы привести ее к границе устойчивости.

,

где - частота, при которой фазовая характеристика равна .

Запасом устойчивости по фазе называется угол, на который нужно повернуть амплитудно-фазовую характеристику разомкнутой системы, чтобы замкнутая САУ оказалась на границе устойчивости.

,

где – значение ФЧХ на частоте среза системы, для которой выполняется условие .