Дифференциальные уравнения и способы их решения. Основные типы дифференциальных уравнений

Содержание статьи

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Примеры.

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t , то этот закон можно записать так:

где dx /dt – скорость распада, а k – некоторая положительная постоянная, характеризующая данное вещество. (Знак «минус» в правой части указывает на то, что x убывает со временем; знак «плюс», подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.)

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м 3 воды. Если чистая вода вливается в емкость со скоростью 1 м 3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t , то в любой момент времени t в 1 м 3 раствора в емкости содержится x /100 кг соли; поэтому количество соли убывает со скоростью x /100 кг/мин, или

3) Пусть на тело массы m , подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2 x /dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t .

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые «теоремы существования», в которых доказывается наличие решения у того или иного типа дифференциальных уравнений.

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy /dx = x /y , удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y 2 – x 2 = c , где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y 2 – x 2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce kt , где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e t /100 . Уравнение из примера (4) имеет общее решение T = 70 + ce kt и частное решение 70 + 130 –kt ; чтобы определить значение k , необходимы дополнительные данные.

Дифференциальное уравнение dy /dx = x /y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy /dx = f (x )/g (y ) можно решить, записав его в дифференциалах g (y )dy = f (x )dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy /dx = x /y имеем f (x ) = x , g (y ) = y . Записав его в виде ydy = xdx и проинтегрировав, получим y 2 = x 2 + c . К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Если дифференциальное уравнение имеет вид dy /dx = M (x ,y )/N (x ,y ), где M и N – две заданные функции, то его можно представить как M (x ,y )dx N (x ,y )dy = 0. Если левая часть является дифференциалом некоторой функции F (x ,y ), то дифференциальное уравнение можно записать в виде dF (x ,y ) = 0, что эквивалентно уравнению F (x ,y ) = const. Таким образом, кривые-решения уравнения – это «линии постоянных уровней» функции, или геометрические места точек, удовлетворяющих уравнениям F (x ,y ) = c . Уравнение ydy = xdx (рис. 1) – с разделяющимися переменными, и оно же – в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy xdx = 0, т.е. d (y 2 – x 2) = 0. Функция F (x ,y ) в этом случае равна (1/2)(y 2 – x 2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения.

Линейные уравнения – это уравнения «первой степени» – неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy /dx + p (x ) = q (x ), где p (x ) и q (x ) – функции, зависящие только от x . Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2 x /dt 2 = –kx . Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2 x /dt 2 = –kx и потребуем, чтобы y (0) = y (1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p , т.е. k = m 2 n 2 p 2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx . Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f (x ) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy /dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x ,y ), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy /dx ) 2 = 1 – y 2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c ). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

X , y ) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными , которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным .

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование .

Если у вас в запасе всего день-два , то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним обычные алгебраические уравнения . Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество всех функций , которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид (– произвольная постоянная), который называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение ?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шагесмотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т.к. константа + константа всё равно равна другой константе) . В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение .

Пожалуйста, запомните первый технический приём , он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) целесообразно записать тоже под логарифмом. И записать НЕПРЕМЕННО, если получились одни логарифмы (как в рассматриваемом примере) .

То есть, ВМЕСТО записи обычно пишут .

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ : общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено верное равенство, значит, общее решение удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т.д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют... …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) ...пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент , но дабы не накрыть «чайников» лавиной новой информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение : по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, переообозначим её буквой :
– при этом модуль убираем, после чего константа «цэ» сможет принимать как положительные, так и отрицательные значения

Запомните «снос» константы – это второй технический приём , который часто используют в ходе решения дифференциальных уравнений. На чистовике можно сразу перейти от к , но всегда будьте готовы объяснить этот переход.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ : частное решение:

Выполним проверку. Проверка частного решение включает в себя два этапа:

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В результате у нас получились одни логарифмы, и, согласно моей первой технической рекомендации, константу тоже определяем под логарифм.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:
, и сразу-сразу приводим общий интеграл к виду , коль скоро, это возможно:

Так делать, вообще говоря, не обязательно, но всегда же выгодно порадовать профессора;-)

В принципе, этот шедевр можно записать в ответ, но здесь ещё уместно возвести обе части в квадрат и переобозначить константу:

Ответ: общий интеграл:

! Примечание: общий интеграл часто можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Можно ли выразить «игрек»? Можно. Давайте выразим общее решение:

Само собой, полученный результат годится для ответа, но обратите внимание, что общий интеграл смотрится компактнее, да и решение получилось короче.

Третий технический совет: если для получения общего решения нужно выполнить значительное количество действий, то в большинстве случаев лучше воздержаться от этих действий и оставить ответ в виде общего интеграла. Это же касается и «плохих» действий, когда требуется выразить обратную функцию, возвести в степень, извлечь корень и т.п. Дело в том, что общее решение будет смотреться вычурно и громоздко – с большими корнями, знаками и прочим математическим трэшем.

Как выполнить проверку? Проверку можно выполнить двумя способами. Способ первый: берём общее решение , находим производную и подставляем их в исходное уравнение . Попробуйте самостоятельно!

Второй способ состоит в дифференцировании общего интеграла. Это довольно легко, главное, уметь находить производную от функции, заданной неявно :

делим каждое слагаемое на :

и на :

Получено в точности исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере № 2), нужно:
1) убедиться, что найденное частное решение удовлетворяет начальному условию;
2) проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Найти общий интеграл уравнения , ответ представить в виде .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и поскольку у нас одни логарфимы, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами часто не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за дела?! Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения, ошибок нет, ведь в результате преобразования варьируемой константы получается равноценная варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа, которая с тем же успехом принимает то же множество значений, и поэтому ставить «минус» не имеет смысла.

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании. Чего и вам советую делать.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

И, разумеется, здесь НЕ НАДО выражать «игрек» в явном виде, ибо получится трэш (вспоминаем третий технический совет).

Проверка : Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Виды дифференциальных уравнений:

▫ Обыкновенные дифференциальные уравнения - уравнения, в которых одна независимая переменная

▫ Дифференциальные уравнения в частных производных - уравнения, в которых независимых переменных две и более

Виды дифференциальных уравнений представлены в таблице 1.

Таблица 1.

Обыкновенные дифференциальные уравнения первого порядка
Название Вид Способ решения
С разделяющимися переменными P(x,y)dx+Q(x,y)dy=0

если P(x,y) и Q(x,y) разлагаются на множители, зависящие каждый только от одной переменной.

f(x)g(y)dx+(x)q(y)dy=0

1.разделить переменные

2.проинтегрировать

3.привести к стандартному виду

y=(x)+c – общее решение

Однородные P(x,y)dx+ Q(x,y)dy=0

где P(x,y), Q(x,y) – однородные функции одного измерения

y’=

(если в функции заменить x=tx, y=ty и преобразовать вернемся исходному уравнению)

1. замена y=tx, тогда

2. привести к уравнению с разделяющимися переменными и решить (см. выше).

3. вернуться к замене, подставить

4. привести к стандартному виду y=

Линейные y’+P(x)y=Q(x)

(y’ и у’ входят в первых степенях не перемножаясь между собой)

а) линейное однородное

б) линейное неоднородное

в) уравнение Бернулли

y’+P(x)y=Q(x)y’’

1. замена y=uv,тогда y’=u’v+v’u

2. u’v+v’u+ P(x) uv= Q(x)

v(u’+P(x)u)+v’u= Q(x) (*)

3. в уравнении (*) приравнять скобку к нулю

u’+P(x)u=0 – c разделенными переменными

4. значение u подставить в уравнение (*)

v’P(x)=Q(x) - c разделенными переменными

5. вернуться к замене

y=P(x)(F(x)+c) – общее решение

Обыкновенные дифференциальные уравнения второго порядка.
Допускающие понижения порядка y’’=f(x) Решаются двойным интегрированием
Линейные однородные второго порядка с постоянными коэффициентами y’’+py+qy=0

где p, q – заданные числа

Всякое Л.О.У.

Второго порядка имеет систему двух линейно независимых частных решений.

которая называется фундаментальной системой решений.

Общее решение есть линейная комбинация частных решений его фундаментальной системы

1.Составить характеристическое уравнение
2.в зависимости от вида корней, фундаментальная система решений имеет вид:
корни

характеристического уравнения

фундаментальная система частных решений общее решение
действительные
Различные

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

К выполнению контрольной работы №3

Указания

(темы 12-16)

Тема 12. Дифференциальные уравнения 1-го порядка.

Пискунов, гл. VIII, § 1-8, упр. 1-68

Данко, часть II, гл. IV, §1

12.1 Определение дифференциального уравнения первого порядка.

1.Определение . Равенство, связывающее независимую переменную х , функцию у и производные (или дифференциалы) этой функции называются дифференциальным уравнением первого порядка (DY 1) т.е.

F (x,y,y")=0 или y"=f (x,y)

Решить дифференциальное уравнение первого порядка – значит, найти неизвестную функцию y .

2.Общим решением дифференциального уравнения первого порядка называется функция y= j (x,c) , где C - постоянная, которая при подстановке в дифференциальное уравнение первого порядка обращает его в тождество. На плоскости XOY общее решение y=j(x,c) выражает семейство интегральных кривых.

3. Всякое решение y= j (x,С 0) полученное из общего решения при конкретном значении С=С 0 называется частным решением дифференциального уравнения первого порядка.

4. Задача отыскания частного решения дифференциального уравнения первого порядка , удовлетворяющего начальному условию

Или , или

- называется задачей Коши

5. -ДУ 1 с разделяющимися переменными.

6. - ОДУ 1 – однородное дифференциальное уравнение 1-го порядка или , где , - однородные функции одного измерения. Используется подстановка

7. , где . ДУ 1 , приводимое к однородному подстановкой

Где - точка пересечения прямых

Если , то используется подстановка

8. , где - называется уравнением в полных дифференциалах.

Где - полный дифференциал функции

Решить данное уравнение- значит, найти функцию и .

9. - линейное ДУ 1 (ЛДУ 1)

Если , то уравнение неоднородное,

Если , то уравнение однородное.

ЛДУ 1 интегрируются:

1) Методом Бернулли (с помощью подстановки y = иv , где u и v -пока неизвестные функции)

2) Методом Лагранжа, варьируя произвольную постоянную.

10. , где m - число, m¹0 , m¹1 - дифференциальное уравнение Бернулли, решаемое либо с помощью подстановки y= uv , либо методом Лагранжа (см. пункт 9).

12.2. Примеры решения задач.

Задача 1. Найти частное решение ДУ 1 , удовлетворяющему начальному условию .

Решение : Данное уравнение с разделяющимися переменными.

Т.к. , то уравнение примет вид:

Или - после отделения переменных.

Интегрируя обе части последнего уравнения, получим:

Или -общее решение

Используя начальное условие , , находим . Тогда из общего решения выделяется частное решение:

Задача 2.



Решение: Данное уравнение является однородным, так как коэффициенты при dx и dy суть однородные функции одного и того же измерения (второго) относительно переменных x и y . Применяем подстановку y=xt , где t - некоторая функция аргумента x . Если y= xt , то дифференциал dy = d(xt) = tdx+ xdt , и данное уравнение примет вид:

2xxtdt+(x²t²-x²) (tdx+xdt)= 0

Сократив на , будем иметь:

2tdx+(t²-1) (tdx+xdt)=0

2tdx+(t²-1) tdx+x (t²-1)dt=0

t(2+t²-1) dx+x (t²-1)dt=0

t(1+t²)dx= x(1-t²)dt; .

Мы получили уравнение с разделёнными переменными относительно x и t . Интегрируя, находим общее решение этого уравнения:

Потенцируя, находим , или x(1+t²)=Ct . Из введённой подстановки следует, что . Следовательно, или x²+y²= Cy – общее решение данного уравнения.

Задача 3. Найти общее решение уравнения y"-y tg x=2 xsec x.

Решение: Данное уравнение является линейным, так как оно содержит искомую функцию y и её производную y" в первой степени и не содержит их произведений.

Применяем подстановку y= uv , где u и v –некоторые неизвестные функции аргумента x . Если y=uv , то y"= (uv)"= u"v+uv" и данное уравнение примет вид: u"v+uv"-uvtg x= 2x sec x,

v(u"-utg x)+ uv"= 2xsec x. (1)

Так как искомая функция y представлена в виде произведения двух других неизвестных функций, то одну из них можно выбрать произвольно. Выберем функцию u так, чтобы выражение, стоящее в круглых скобках левой части неравенства (1), обращалось в нуль, т.е выберем функцию u так, чтобы имело место равенство

u"-utg x= 0 (2)

При таком выборе функции u уравнение (1) примет вид

uv"= 2x sec x. (3)

Уравнение (2) есть уравнение с разделяющимися переменными относительно u и x. Решим это уравнение:

ln u= -ln cos x , или

(Чтобы равенство (2) имело место, достаточно найти одно какое-либо частное решение, удовлетворяющее этому уравнению. Поэтому для простоты при интегрировании этого уравнения находим то частное решение, которое соответствует значению произвольной постоянной C=0.) Подставив в (3) найденное выражение для u, получим:

secxv"= 2xsecx; v"= 2x; dv= 2xdx. Интегрируя, получаем v=x²+C . Тогда y=secx(x²+C) - общее решение данного уравнения.

12.3.Вопросы для самоконтроля.

1. Какое уравнение называется дифференциальным?

2. Как определяется порядок уравнения? Примеры.

3. Что значит решить ?

4. Какая функция называется решением ?

5. Какое решение называется общим, частным?

6. Как найти частное решение по начальным условиям? Записать план операций, выполняемых при решении на примере y"- 2x= 0 при начальных условиях y (-2)= 4.

7. Сформулировать геометрический смысл общего и частного решения .