Основные характеристики протона, нейтрона и электрона. Масса нейтрона Что собой представляет нейтрон

Нейтрон - это нейтральная (z=0) частица со спином s=l/2 и отрицательным магнитным моментом мn ? -1,9мB, который в основном определяет электромагнитное взаимодействие нейтрона. Так же как и протону, нейтрону приписывают единичный барионный заряд Вn=+1, изотопический спин Т=1/2 (с проекцией Tж= -1/2) и положительную внутреннюю четность РB=+1. Масса нейтрона составляет mn = 1,00867 а. е. м. = 939,6 МэВ = 1838,6 mе, что на 1,3 МэВ (2,5mе) больше массы протона. В связи с этим нейтрон является в-радиоактивной частицей. С периодом полураспада T1/2?10 мин он распадается по схеме.

Классификация нейтронов

Энергетический ход сечений нейтронных реакций (сечение взаимодействия нейтронов с ядрами) сильно и нерегулярно меняется от ядра к ядру при изменении А (число нуклонов) или Z (число протонов). Несмотря на это, все же удается провести полезную для практики классификацию нейтронных энергий, т. е. выделить различные области энергий так, что для каждой области оказываются характерными определенные типы реакций.

Таким образом, условно нейтроны делятся на:

Ультрахолодные (Е эВ);

Очень холодные (Е эВ);

Холодные (Е 0,025 эВ);

Тепловые (0,025 эВ Е 0,5эВ);

Резонансные (0,5 эВ Е 1кэВ)

Промежуточные (1 Е 500 кэВ);

Быстрые (500 кэВ Е).

Первые пять видов нейтронов иногда называют медленными, т.е. нейтроны с кинетической энергией, меньшей 100 кэВ. Приведенные значения граничных энергии условны. В действительности эти границы различны и зависят от типа явлений и конкретного вещества.

Из теории ядерных реакций известно, что сечения взаимодействий нейтронов с ядрами в среднем резко растут по закону «1/v» (v - скорость нейтрона) при уменьшении энергии нейтрона. Именно по этому свойству нейтроны разделяются на две большие группы -- медленных и быстрых нейтронов. Граница между этими группами не является строго определенной. Она лежит примерно в области 10 - 100 кэВ. Медленные нейтроны сильно взаимодействуют с ядрами. Для быстрых нейтронов это взаимодействие значительно слабее. Однако, «медленность» медленных нейтронов весьма относительна. Даже нейтрон с энергией 0,025 эВ имеет, как нетрудно подсчитать, скорость 2 км/с.

У холодных, очень холодных и ультрахолодных нейтронов крайне велико сечение захвата ядрами (согласно закону «l/v»). У них также очень сильно проявляются волновые свойства, так как длина волны таких нейтронов намного больше межатомных расстояний. Однако использовании данных нейтронов затруднено сложностью их получения.

Энергия =0,025 эВ определяет порядок энергий тепловых нейтронов. В температурной шкале

где k - постоянная Больцмана, для абсолютной температуры, соответствующей энергии тепловых нейтронов, получается значение Т - 300 К, т. е. комнатная температура. Таким образом, энергия соответствует наиболее вероятной скорости нейтронов, находящихся в тепловом равновесии со средой при комнатной температуре. В ядерных энергетических установках температура может значительно превышать комнатную. Кроме того, находящиеся в тепловом равновесии нейтроны имеют разброс по скоростям, в результате чего энергии довольно большой части нейтронов могут быть заметно больше kT. Поэтому к тепловым обычно относят нейтроны с энергиями примерно до 0,5 эВ. Сечения поглощения ядрами достаточно велики и для тепловых нейтронов. Получение этих нейтронов даже в очень больших количествах является хорошо освоенным процессом. Поэтому тепловые нейтроны широко используются в ядерной технике.

Нейтроны с энергиями от 0,5 эВ до 1 кэВ называют резонансными, потому что в этой области для средних и тяжелых ядер полное нейтронное сечение довольно велико и график его зависимости от энергии представляет собой густой частокол острых резонансов.

Нейтроны с энергиями от 1 до 100 кэВ называют промежуточными. Часто в промежуточные включают и резонансные нейтроны. В этой области энергий отдельные резонансы сливаются (исключением являются легкие ядра) и сечения в среднем падают с ростом энергии.

К быстрым относят нейтроны с энергиями примерно от 100 кэВ до 14 МэВ. Сечения взаимодействия таких нейтронов с ядрами уже намного меньше, чем для медленных нейтронов. Прикладное значение быстрых нейтронов обусловлено тем, что основным техническим источником нейтронов является реакция деления ядер, порождающая нейтроны мегаэлектронвольтных энергий. Далее эти быстрые нейтроны деления иногда используются непосредственно, а чаще превращаются в медленные путем специального процесса замедления.

Нейтроны с энергиями выше 14 МэВ из-за дороговизны их получения широкого практического применения не получили и пока используются главным образом для исследований в физике ядерных реакций и элементарных частиц.

В ядерной энергетике в основном приходится иметь дело с нейтронами, обладающими энергиями примерно от 0,025 эВ до 10 МэВ.

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.

Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c

Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.

Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 масса нейтрона = 1,00866489109991 атомная единица массы [а. е. м.]

Исходная величина

Преобразованная величина

килограмм грамм эксаграмм петаграмм тераграмм гигаграмм мегаграмм гектограмм декаграмм дециграмм сантиграмм миллиграмм микрограмм нанограмм пикограмм фемтограмм аттограмм дальтон, атомная единица массы килограмм-сила кв. сек./метр килофунт килофунт (kip) слаг фунт-сила кв. сек./фут фунт тройский фунт унция тройская унция метрическая унция короткая тонна длинная (английская) тонна пробирная тонна (США) пробирная тонна (брит.) тонна (метрическая) килотонна (метрическая) центнер (метрический) центнер американский центнер британский квартер (США) квартер (брит.) стоун (США) стоун (брит.) тонна пеннивейт скрупул карат гран гамма талант (Др. Израиль) мина (Др. Израиль) шекель (Др. Израиль) бекан (Др. Израиль) гера (Др. Израиль) талант (Др. Греция) мина (Др. Греция) тетрадрахма (Др. Греция) дидрахма (Др. Греция) драхма (Др. Греция) денарий (Др. Рим) асс (Др. Рим) кодрант (Др. Рим) лептон (Др. Рим) планковская масса атомная единица массы масса покоя электрона масса покоя мюона масса протона масса нейтрона масса дейтрона масса Земли масса Солнца берковец пуд Фунт лот золотник доля квинтал ливр

Подробнее о массе

Общие сведения

Масса - это свойство физических тел противостоять ускорению. Масса, в отличие от веса, не изменяется в зависимости от окружающей среды и не зависит от силы притяжения планеты, на которой находится это тело. Массу m определяют при помощи второго закона Ньютона, по формуле: F = m a , где F - это сила, а a - ускорение.

Масса и вес

В обиходе часто используется слово «вес», кода говорят о массе. В физике же вес, в отличие от массы - это сила, действующая на тело благодаря притяжению между телами и планетами. Вес также можно вычислить по второму закону Ньютона: P = m g , где m - это масса, а g - ускорение свободного падения. Это ускорение возникает благодаря силе притяжения планеты, вблизи которой находится тело, и его величина также зависит от этой силы. Ускорение свободного падение на Земле равно 9,80665 метра в секунду, а на Луне - примерно в шесть раз меньше - 1,63 метра в секунду. Так, тело массой в один килограмм весит 9,8 ньютона на Земле и 1,63 ньютона на Луне.

Гравитационная масса

Гравитационная масса показывает какая гравитационная сила действует на тело (пассивная масса) и с какой гравитационной силой тело действует на другие тела (активная масса). При увеличении активной гравитационной массы тела его сила притяжения также увеличивается. Именно эта сила управляет движением и расположением звезд, планет и других астрономических объектов во вселенной. Приливы и отливы также вызваны гравитационными силами Земли и Луны.

С увеличением пассивной гравитационной массы увеличивается и сила, с которой гравитационные поля других тел действуют на это тело.

Инертная масса

Инертная масса - это свойство тела противостоять движению. Именно вследствие того, что тело имеет массу, нужно прикладывать определенную силу, чтобы сдвинуть тело с места или изменить направление или скорость его движения. Чем больше инертная масса, тем большую силу нужно для этого приложить. Масса во втором законе Ньютона - именно инертная масса. По величине гравитационная и инертная массы равны.

Масса и теория относительности

Согласно теории относительности, гравитирующая масса изменяет кривизну пространственно-временного континуума. Чем больше такая масса тела, тем сильнее это искривление вокруг этого тела, поэтому вблизи тел большой массы, таких как звёзды, траектория световых лучей искривляется. этот эффект в астрономии носит название гравитационных линз. Наоборот, вдали от больших астрономических объектов (массивные звёзды или их скопления, называемые галактиками) движение световых лучей прямолинейно.

Основным постулатом теории относительности является постулат о конечности скорости распространения света. Из этого вытекает несколько любопытных следствий. Во-первых, можно представить себе существование объектов со столь большой массой, что вторая космическая скорость такого тела будет равна скорости света, т.е. никакая информация от этого объекта не сможет попасть во внешний мир. Такие космические объекты в общей теории относительности называют «чёрными дырами» и их существование было экспериментально доказано учёными. Во-вторых, при движение объекта с околосветовой скоростью его инертная масса настолько возрастает, что, локальное время внутри объекта замедляется по сравнению со временем. измеряемым стационарными часами на Земле. Этот парадокс известен как «парадокс близнецов»: один из них отправляется в космический полёт с околосветовой скоростью, другой остаётся на Земле. По возвращении из полёта через двадцать лет, выясняется, что космонавт-близнец биологически моложе своего брата!

Единицы

Килограмм

В системе СИ масса изменяется в килограммах. Килограмм определяется исходя из точного численного значения постоянной Планка h , равной 6,62607015×10⁻³⁴, выраженной в Дж с, что равно кг м² с⁻¹, причем секунда и метр определяются по точным значениям c и Δν Cs . Массу одного литра воды можно приближенно считать равной одному килограмму. Производные килограмма, грамм (1/1000 килограмма) и тонна (1000 килограммов) не являются единицами СИ, но широко используются.

Электронвольт

Электронвольт - единица для измерения энергии. Обычно ее используют в теории относительности, а энергию вычисляют по формуле E =mc ², где E - это энергия, m - масса, а c - скорость света. Согласно принципу эквивалентности массы и энергии, электронвольт - также и единица массы в системе естественных единиц, где c равна единице, а значит, масса равна энергии. В основном электронвольты используют в ядерной и атомной физике.

Атомная единица массы

Атомная единица массы (а. е. м. ) предназначена для масс молекул, атомов, и других частиц. Одна а. е. м. равна 1/12 массы атома нуклида углерода, ¹²C. Это примерно 1,66 × 10 ⁻²⁷ килограмма.

Слаг

Слаги используются в основном в британской имперской системе мер в Великобритании и некоторых других странах. Один слаг равен массе тела, которое движется с ускорением один фут в секунду за секунду, когда к нему приложена сила в один фунт-силу. Это примерно 14,59 килограмма.

Солнечная масса

Солнечная масса - мера массы, принятая в астрономии для измерения звезд, планет и галактик. Одна солнечная масса равна массе Солнца, то есть, 2 × 10³⁰ килограммов. Масса Земли примерно в 333 000 раза меньше.

Карат

В каратах измеряют массу драгоценных камней и металлов в ювелирном деле. Один карат равен 200 миллиграммам. Название и сама величина связаны с семенами рожкового дерева (по-английски: carob, произносится «кароб»). Один карат раньше был равен весу семечка этого дерева, и покупатели носили с собой свои семена, чтобы проверить, не обманули ли их продавцы драгоценных металлов и камней. Вес золотой монеты в Древнем Риме равнялся 24 семечкам рожкового дерева, и поэтому караты стали применяться для обозначения количества золота в сплаве. 24 карата - чистое золото, 12 каратов - сплав наполовину из золота, и так далее.

Гран

Гран использовался как мера веса во многих странах до эпохи Возрождения. Он основывался на весе зерен, в основном ячменя, и других популярных в то время культур. Один гран равен около 65 миллиграммам. Это немного больше четверти карата. Пока караты не получили широкого распространения, в ювелирном деле использовались граны. Эта мера веса используется и по сей день для измерения массы пороха, пуль, стрел, а также золотой фольги в стоматологии.

Другие единицы массы

В странах, где не принята метрическая система, используют меры массы британской имперской системы. Например, в Великобритании, США и Канаде широко применяются фунты, стоуны и унции. Один фунт равен 453,6 грамма. Стоуны используются в основном только для измерения массы тела человека. Один стоун - это примерно 6,35 килограмма или ровно 14 фунтов. Унции в основном используют в кулинарных рецептах, особенно для продуктов в маленьких порциях. Одна унция это 1/16 фунта, или приблизительно 28,35 грамма. В Канаде, которая формально перешла на метрическую систему в 1970-х годах, многие продукты продаются в упаковке, рассчитанной на округленные британские единицы, например, один фунт или 14 жидких унций, однако на них указан вес или объем в метрических единицах. По-английски такую систему называют «мягкой метрической» (англ. soft metric ), в отличие от «жесткой метрической» системы (англ. hard metric ), в которой на упаковке указывают округленный вес в метрических единицах. На этом снимке показаны «мягкие метрические» упаковки продуктов питания с указанием веса только в метрических единицах и объема как в метрических, так и в имперских единицах.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Группа исследователей из Американского национального института стандартов и технологий обновила свои результаты измерения времени жизни нейтрона в эксперименте с нейтронным пучком. Их значение стало еще сильнее отличаться от результатов, полученных в нейтронных ловушках. В чем причина этого расхождения - пока неясно.

Нестыкующиеся измерения

Экспериментальная физика занимается не только изучением каких-то сложных эффектов, но и аккуратным измерением простых и универсальных параметров. Эти параметры характеризуют то или иное свойство нашего мира, они могут встречаться в описании разных явлений, поэтому очень полезно их знать как можно точнее. Такие измерения, вследствие своей важности, часто проводятся несколькими группами исследователей и разными экспериментальными методами.

К сожалению, иногда возникает ситуация, когда измерения разных групп или измерения разными методами дают существенно отличающиеся результаты. Сразу же подчеркнем: речь идет не о расхождении теории с экспериментом, а о расхождении между разными результатами измерений. Для физика-экспериментатора такие ситуации - источник постоянной головной боли («где же я ошибся, что же я не углядел?»), для теоретика-оптимиста - повод поупражняться в придумывании новых физических явлений, которые могли бы тоже играть тут роль. Такие ситуации, конечно, происходят регулярно и являются частью естественного процесса экспериментального изучения нашего мира. Они могут оказаться очень полезными с точки зрении истории физики - по крайней мере после того, как физики наконец-то разберутся в источниках проблем. Но при взгляде изнутри ситуации , когда проблема еще не решена, они всё же неприятны: непонятно, что именно и где именно сбоит, непонятно, какому методу можно доверять, а какому - нет, да и внимание теоретиков иногда отвлекается от других задач.

Конечно, никто не требует, чтобы результаты измерений буквально совпадали друг с другом. Совершенно нормально, когда они различаются в рамках заявленных погрешностей измерений - на одну-две величины погрешности (на научном языке, на одну-две «сигмы»). Такое расхождение может произойти чисто случайно, и нет никаких оснований видеть тут серьезное отличие. Когда измеренные величины различаются на 3 сигмы - это уже повод для беспокойства, на 5 сигм - повод для очень серьезного беспокойства (см. подробности на страничке Что такое «сигма»?). И снова подчеркнем: это беспокойство относится не к самой величине, а к методам измерения, к (не)пониманию экспериментаторами своей установки либо метода измерения и обработки данных.

Особенно драматична ситуация, когда с течением времени погрешности каждого отдельного эксперимента уменьшаются, но различие между ними остается. В этом случае расхождение между ними, выраженное в единицах сигма, растет со временем.

Есть несколько примеров такой ситуации в современной физике. Видимо, самая впечатляющая - это гравитационная постоянная, где нестыковка между четырьмя точными измерениями уже превышает 10 сигм; см. подробности в новости Новые измерения гравитационной постоянной еще сильнее запутывают ситуацию , «Элементы», 13.09.2013. Другой пример - недавние измерения новым методом зарядового радиуса протона с результатом, отличающимся от общепринятого значения на 7 сигм. Еще одна «проблемная величина» - это время жизни нейтрона, где бурные изменения произошли в последние несколько лет. И вот сейчас, когда казалось уже, что ситуация успокоилась, в журнале Physical Review Letters вышла , подливающая масла в огонь.

Время жизни нейтрона: предыстория

Нейтрон - самая долгоживущая из нестабильных элементарных частиц. В свободном состоянии он живет очень долго, почти 15 минут, и распадается за счет слабого взаимодействия на протон, электрон и антинейтрино. Внутри ядра он может стать как совершенно стабильным, так и очень нестабильным; эти ядерные эффекты мы здесь не обсуждаем. Еще подчеркнем, что речь тут идет о времени жизни в системе отсчета самой частицы; если частица движется с околосветовой скоростью, ее время жизни может сильно увеличиться (см. по этому поводу задачу про время жизни фотона). Время жизни нейтрона - величина, очень важная как для физики частиц и атомного ядра, так и для астрофизики. Неудивительно, что его принялись измерять почти сразу после того, как экспериментаторы научились получать и регистрировать свободные нейтроны, ну и, конечно, отвлеклись от задач, связанных с военными применениями - всё же происходило это в 40-е годы.

Поначалу все эксперименты делались только с нейтронами, вылетающими из реактора. Из-за того что нейтроны живут долго, а летят из реактора быстро, измерить их уменьшение с течением времени нереально. Зато можно убедиться, что нейтроны распадаются, поскольку датчики, установленные поодаль от реактора, регистрировали иногда приходящие почти одновременно протоны и электроны. Если знать нейтронный поток, измерить частоту таких срабатываний и разобраться с угловыми характеристиками, то можно оценить и время жизни нейтрона. Первые оценки 1950 года давали время жизни от 13 до 40 минут; год спустя было было опубликовано первое настоящее измерение с результатом 1110 ± 220 с.

В течение последующих трех десятилетий измерения становились всё более и более точными (см. рис. 1) и постепенно сошлись на значении около 900 секунд с погрешностью 1–2%. В схему эксперимента было внедрено много усовершенствований, но общий подход оставался неизменным: измерялось не уменьшение количества нейтронов со временем, а радиоактивность пролетающего мимо нейтронного пучка. Такой метод так и называется - пучковый.

Несколько лет ситуация оставалась подвешенной. Авторы «революционного» измерения не ограничились предъявлением только своих результатов, но и тщательно рассмотрели методики, использованные в других ловушечных экспериментах, и указали на возможные источники неточностей и систематического смещения результатов. В своей статье 2010 года два ключевых автора провели общий анализ всех имевшихся на тот момент данных и предложили снизить официально среднее значение практически до своего результата. Коллектив Particle Data Group , который занимается такими усреднениями, в этой ситуации воздержался от суждений. В его отчете за 2010 год осталось старое общепринятое число, но оно сопровождалось такой припиской:

Новый результат Серебров и др. (2005) настолько сильно отличается от остальных, что нет смысла пытаться включать его в общее усреднение. Разобраться с этой ситуацией должны эксперты, а до тех пор наше усредненное значение 885,7 ± 0,8 с следует воспринимать с долей скептицизма.

Авторы предыдущих измерений прислушались к критике группы Сереброва, провели новый анализ погрешностей и действительно вынуждены были пересмотреть свои результаты. В их новых публикациях уже фигурируют числа от 880 до 882 секунд. При этом авторы работы 2000 года - той самой, в которой впервые была достигнута общая погрешность меньше 1 секунды, - были вынуждены в 2012 году эту погрешность резко увеличить. Можно сказать, что группа Сереброва в этом вопросе одержала полную и безоговорочную победу. Она не только в одиночку «переборола» несколько результатов других групп, но и способствовала нахождению у них ошибок. В настоящее время это измерение 2005 года является единственным с полной погрешностью меньше 1 секунды.

Завершающим аккордом стал пересмотр общепринятого значения от Particle Data Group в отчете 2012 года. Нынешнее значение равно 880,0 ± 0,9 с . Это редкий случай, когда PDG пересматривает значение какой-то величины, резко и сильно смещая его практически без изменения погрешности.

Текущая ситуация

Можно ли сказать, что ситуация сейчас полностью разрешена? Пока нет. Некоторый консенсус сейчас достигнут между несколькими экспериментами, использующими, по сути, один и тот же инструмент - материальную ловушку нейтронов. Как показала история развития ситуации, в этом методе есть много подводных камней, и никто пока не может гарантировать, что все они обнаружены. Для примера скажем, что в 2009 году вышла с указанием на еще один возможный источник погрешности, связанный с диффузным рассеянием нейтронов на шероховатой поверхности ловушки, однако группа Сереброва на эту критику оперативно отреагировала . Впрочем, в последней версии статьи появилась реакция и на этот ответ. Так или иначе, обсуждения продолжаются. А поэтому для большей уверенности, что всё под контролем, желательно убедиться, что такое же значение времени жизни получается в магнитных ловушках, а также в пучковых экспериментах.

С магнитными ловушками ситуация пока не вполне ясна. С одной стороны, еще в 2007 году было получено значение, близкое к нынешнему «официальному», но результаты там, строго говоря, остаются предварительными. Месяц назад в архиве е-принтов появилась статья D. J. Salvat et al. Storage of ultracold neutrons in the UCNτ magneto-gravitational trap , в которой описывается первое измерение времени жизни нейтрона в новой магнитно-гравитационной ловушке, построенной в Лос-Аламосской национальной лаборатории в США. Первое измерение на очень низкой статистике дало значение 860 ± 19 с, то есть точность тут пока слишком низка для каких-то существенных выводов. Авторы вскоре увеличат статистку и тем самым намереваются достичь точности аж в 0,1 секунды. Существуют и другие нейтронные ловушки, на которых исследователи попробуют добиться сравнимой точности.

Что касается пучковых экспериментов, то здесь расхождение остается невыясненным. На днях в журнале Physical Review Letters вышла с улучшенной версией пучкового эксперимента, проводимого в NIST. Новый эксперимент проводился по технологии, описанной в публикации 2005 года (см. рис. 2), только сейчас была усовершенствована методика измерения нейтронного потока, что позволило уменьшить погрешность. Улучшенный результат составляет 887,7 ± 1,2 ± 1,9 с . Он согласуется со старым значением той же группы и существенно расходится с последними ловушечными результатами.

Различие тут пока не столь драматическое, всего 3,8 сигмы, но - как показала вся эта история - отбрасывать его ни в коем случае не следует. Оно является указанием на то, что какой-то из методов принимает во внимание не все тонкости, но какой - пока не ясно. Конечно, в идеале хотелось бы получить аналогичное пучковое измерение и другой, независимой от NIST группы. К сожалению, в последние годы упор в этом вопросе смещается всё больше и больше к ловушечным экспериментам с нейтронами. Так или иначе, ситуация пока требует разъяснения.