Л лейцин инструкция по применению. Лейцин в бодибилдинге – это как бензин для вашего авто

Лейцин относится к незаменимым аминокислотам. Их принято считать незаменимыми факторами питания. Получает наш организм незаменимые аминокислоты из белковых продуктов. Каждая аминокислота выполняет ряд своих уникальных функций. Организм использует аминокислота лейцин для создания белка.

Свойства лейцина.

Лейцин выполняет ряд важных функций, необходимых для организма человека, к ним относятся:

  1. Необходима для нормального функционирования печени;
  2. В послеоперационный период, используется для восстановления кожи и костей. Способствует быстрому заживлению ран;
  3. Снижает уровень сахара в крови. Лейцин распадается до глутамина и аланина, которые поддерживают уровень глюкозы в крови;
  4. Стимулирует рост мышечной ткани и препятствует разрушению белка. Это функция лейцина важна для спортсменов для наращивания мышц.
  5. Участвует в обмене углеводов.
  6. Для укрепления иммуной системы;
  7. Предотвращает наступление усталости;
  8. Эффективен при борьбе с лишним весом.

Суточная норма лейцина составляет 5000мг для взрослого человека, по данным Скурихина И.М.

Лейцин в каких продуктах содержится.

Эта содержится в белковых продуктах.

Чтобы получить суточную норму лейцина нужно съесть 200г пшенной каши + 115г мяса кролика.

При недостатке лейцин наблюдается психическое расстройство.

Причина недостатка лейцина является недостаточное поступление в организм витамина В6.

Избыток лейцина вызывает избыток аммиака в организме.

Женщине для заживления ран, полученных во время родов , нужно употреблять продукты, богатые лейцином.

Лейцин для кормящих мам .Накормить мужа, содержать в порядке дом, ухаживать за малышом - все это утомляет молодую маму и приводит к постоянной усталости и недосыпанию. Самый простой способ для снятия усталости является употребление продуктов, содержащих незаменимые аминокислоты, в том числе лейцин.

Лейцин для детей. Каждую маму интересует, как защитить ребенка от инфекций. Не последнюю роль в ворпосе укрепления иммунитета ребенка является питание, а даже может быть и первую. Ребенок должен получать с пищей все незаменимые вещества, в том числе лейцин, чтобы быть здоровым и успешным.

Понравилась моя статья: Лейцин аминокислота для женщин и детей", оставьте комментарий.

Существуют доказательства, что хронические болезни цивилизации связаны с гиперактивацией mTORС, такие как акне, ожирение, диабет 2-го типа, артериальная гипертензия, болезнь Альцгеймера, рак, в особенности рак простаты. Сегодня мы начнем разговор про «быстрые» аминокислоты, которые значительно стимулируют mTORС. Это аминокислоты с разветвленной цепью, в первую очередь лейцин, расскажу про его светлую и темную сторону. Про метионин уже было: .









Простое объяснение про mTOR.

В клетках нашего организма есть молекулярный комплекс, который управляет активностью клетки. Его активность важна для роста организма и отдельных его тканей (наращивание мышц). Но после 25 лет рост человека заканчивается и излишняя активность этого комплекса mTOR заставляет расти вредные, болезненно измененные клетки (атеросклеротические бляшки, жир, раковые клетки и др.). Если человек активно занимается спортом и подвергается большим нагрузкам, то он может себе безопасно позволить большую активность mTOR.

Представьте себе, что наша жизнь – это езда на автомобиле. Если вы тупо будете давить на газ все время, то скоро попадете в аварию. Для долгой и безопасной езды нужно притормаживать, останавливаться, пропускать другие машины. Т.е. для наших клеток нужно периоды неактивного mTOR, чтобы наши клетки могли восстанавливаться. Постоянная стимуляция и рост приводят к тому, что наши клетки становятся «замусоренными» и теряют чувствительность к сигналам организма, что приводит к проблемам.

Продукты питания имеют разное влияние на активность mTOR. Есть нейтральные продукты, которые стимулируют mTOR пропорционально числу калорий, а есть «быстрые» продукты, которые стимулирую mTOR намного сильнее. Если человек растет или физически активен значительную часть дня, то особого вреда для него нет. Но если человек имеет меньшую физическую активность, то эти продукты будут приводить к росту mTOR-зависимых болезней, про которые я говорил раньше.

В связи с этим, постоянно увеличивающееся сигнализирование mTORС1 признано основной движущей силой развития mTORС1-зависимых болезней цивилизации. Клетка реагирует на многие стимулы (факторы роста, питательные вещества, гормоны и др.), в итоге активируется ферментный комплекс mTOR. Считается, что его хроническая, неизвестно откуда взявшаяся активация способствует зарождению и прогрессированию ряда заболеваний, таких как аутизм, болезнь Альцгеймера, паркинсонизм и рак. Сейчас в серии постов я расскажу про основные пути активации mTOR, сегодня речь пойдет про белки и аминокислоты. И вы увидите, что разделение белков на «животные» и «растительные» не совсем правильно с точки зрения молекулярной биологии. Так, соевый и пшеничный белок – это тоже «быстрые» продукты, которые значительно стимулируют mTOR.

Основные пути активации (не все!).

1. Гормоны и факторы роста: тестостерон, орексин, инсулин, ИФР-1 и др.



3. Физические упражнения. mTOR активируется в мозгe, мышцах и сердце, ингибируется в печени и жировых клетках, что несет пользу для организма.

4. Воспаление (избыток омега-6 жирных кислот, нарушенная микрофлора и др.)

5. Определенные вещества, например фосфорная кислота. Важно уменьшить потребление и создание в организме ортофосфорной кислоты (Ортофосфорная кислота зарегистрирована в качестве пищевой добавки E338. Применяется как регулятор кислотности в газированных напитках, например в Кока-Коле)

Быстрые продукты: молоко.

Быстрые продукты содержат нутриенты, которые максимально сильно стимулируют mTOR pазными механизмами: через глюкозу, через ИФР-1, через режим кормления (Чем чаще ест, тем сильнее вырабатывается ИФР-1 даже при одинаковом числе калорий), через действие лейцина и множеством других механизмов. Классическим быстрым продуктом является молоко и продукты из него (сыр, творог, сухое молоко и др.), потребление которых растет невероятно быстро. Более того, сухое молоко добавляется во множество других продуктов, от батончиков и хлеба, до быстрых каш и диетического питания. Все молочные продукты вызывают высокий подъем инсулина, ИФР-1, стимулируют mTOR напрямую через высокое содержание лейцина и метионина.

Молоко это не просто еда, но очевидно представляет собой сложнейшую эндокринную систему сигналов, активирующую mTORС1 через специальные материнские, получаемые из молока передатчики, которые контролируются лактационным геномом млекопитающих: производимых молочными железами BCAAs молочных белков и экзосомальных miRs, которые приводят к увеличению сигналов mTORС1 для послеродового роста.

Коровье молоко - это чрезвычайно мощная эволюционная программа быстрого роста вида Bos Taurus (домашняя корова), которая может перманентно индуцировать чрезмерную стимуляцию mTORC1 у людей, употребляющих молоко. Более того, увеличение веса теленка в течение первого года кормления коровьим молоком (0.7 – 0.8 кг в день) – это почти в 40 раз быстрее, чем у грудных человеческих младенцев (0.2 кг в день)

Это вкусно.

Почему эти продукты настолько популярны? Очень просто – нашему мозгу они кажутся вкусными (равно как и сахар, жир, соль). Система рецепции незаменимых аминокислот (обнаружение дефицита или избытка) находится в головном мозге. Здесь происходит формирование сигналов последующего пищевого поведения, выражающегося в предпочтительном поедании сбалансированных кормов или развития стойкого отвращения к диете с дефицитом или имбалансом с последующей адаптацией и повышением потребления корма, или -невозможность адаптации, в зависимости от остроты имбаланса незаменимых аминокислот.

Существуют экспериментальные доказательства того, что в этих реакциях главную роль играет передняя кора грушевидной доли (КГД-anterior piriform cortex - APC) головного мозга. Здесь происходит интеграция сигналов дефицита незаменимых аминокислот. К настоящему времени известно, что протеин-киназы являются необходимыми передатчиками сигнальных импульсов в нервной системе и формирования рефлексов.

Поскольку имбаланс диет по аминокислотам приводит к устойчивому отвращению к пище, предполагается, что фосфорилирование определённых белков при помощи протеинкиназ может играть важную роль в возникновении аноректической реакции. Именно поэтому «быстрые продукты» кажутся вкуснее. Но в природе они есть лишь у матери (молоко) или в ограниченном количестве (яйца).

Установлено, что аминокислоты с разветвлёнными цепями (АКРЦ) -лейцин, изолейцин и валин стимулируют синтез белка в скелетных мышцах с такой же эффективностью, как и полная смесь всех аминокислот. Это явление привлекло широкое внимание представителей спортивной медицины, так как позволяет управлять мышечной массой спортсменов. Действия лейцина осуществляется через протеин-киназу mTOR.

Самая быстрая аминокислота – лейцин.

Лейцин (сокр. Leu или L; 2-амино-4-метилпентановая кислота; от греч. leukos — «белый»), входит в состав всех природных белков. Лейцин является одной из незаменимых аминокислот, которая не синтезируется клетками организма, поэтому поступает в организм исключительно в составе белков натуральной пищи. Отсутствие или нехватка лейцина в организме может привести к нарушениям обмена веществ, остановке роста и развития, снижению массы тела. Лейцин не может производиться организмом и должен поступать с пищей или пищевыми добавками. Его можно найти в молочных продуктах, мясе, пшенице, бобовых, орехах, коричневом рисе и продуктах из цельного зерна. Лейцин составляет около восьми процентов всех аминокислот в организме и это четвертая аминокислота по концентрации в мышечных тканях.

Лецин обладает уникальным свойством напрямую стимулировать активность mTOR. Кроме того, лейцин стимулирует выделение инсулина и ИФР-1, которые также стимулируют mTOR. Что интересно, лейцин оказывает гораздо большее воздействие на синтез белка по сравнению с любой другой аминокислотой.

Одним из наиболее изученных путей мышечного роста считается серин/треониновая протеинкиназа mTOR (мишень рапамицина у млекопитающих), с помощью которой лейцин активизирует сложные пути формирования мышц. Следует отметить, что mTOR весьма чувствителен к концентрации лейцина. Лейцин оказывает приблизительно в 10 раз большее влияние на образование новых белков, чем любая другая аминокислота!

Белая сторона лейцина.

Активация mTOR в мышцах – это важный фактор мышечного роста. Поэтому многие атлеты рекомендуют стиль питания «сосунка» - новорожденного ребенка: жидкая пища, молоко и его производные (такие как сывороточный белок), много сахара и частые приемы пищи. Безусловно, все это помогает активации mTOR. Но хочу обратить внимание, что главным для роста мышц является избирательное стимулирование mTOR (только в мышцах). Когда вы занимаетесь спортом, то mTOR стимулируется механическим фактором роста, который выделяется в мышцах и mTOR там же и действует.

Научно доказано, что сами по себе тренировки с отягощениями способны повысить уровень белкового синтеза на 40%. При использовании лейцина эта цифра возрастает до 50%. Рост и стимуляция мышц достаточны при активации механического фактора роста. Участие mTOR, конечно, добавляет эффект но только если вы реально «растете». А вот пищевая стимуляция лейцина увеличивает активность mTOR во всем организме и растет все: от атеросклеротических бляшек до прыщей. Конечно, в кратковременной стимуляции проблемы нет, важен баланс, я уже об этом писал.

Несмотря на то, что это, возможно, приводит к образованию более сухой массы в течение некоторого периода времени, лейцин также демонстрирует эффективность в увеличении мышечной массы у людей с низким потреблением белка и у пожилых людей (у которых, как правило, нарушен синтез мышечного белка в результате лечебной диеты).

Воздействие лейцина на глюкозу до конца не выяснено. Лейцин обладает свойством снижать уровень сахара в крови (может выделять инсулин из поджелудочной железы, а также непосредственно стимулировать поглощение глюкозы клеткой без инсулина), но также имеет и противоположные свойства (ингибирует стимулируемое инсулином усвоение глюкозы, с помощью стимуляции киназы рибосомного белка S6). В культуре клеток лейцин стимулирует поглощение глюкозы до 45 минут. В живых системах воздействие небольших доз лейцина незначительно (по предварительным данным, лейцин обладает реабилитационными свойствами при сахарном диабете).

Кроме того, лейцин является эффективным вспомогательным средством, повышающим работоспособность человека во время различных диет. Приём лейцина и других BCAA аминокислот помогает спортсменам уменьшать жировые отложения, увеличивать мышечную массу, повышать выносливость и улучшать качество выполняемых упражнений во время тренировок

Немного биохимии . Как уже звучало, основной механизм действия лейцина – это активация мишени рапамицина (TOR), которая упоминается как «мишень рапамицина в клетках млекопитающих» (в частности, лейцин активизирует mTORC1, - одну из подгрупп комплекса). Первый внутриклеточный мультимолекулярный сигнальный комплекс (mTORC1) состоит из нескольких белков: сам TOR, наряду с raptor (англ. regulatory-associated protein of TOR), белка GβL и PRAS40 (англ. proline-rich PKB/AKT substrate 40 kDa)). Этот комплекс активируется добавкой лейцина.

Инкубация клетки с помощью лейцина активирует mTOR без активации протеинкиназы В, и это воздействие идентично общему увеличению содержания внутриклеточного кальция. Интересно, что лейцин, видимо, индуцирует активность mTOR посредством увеличения внутриклеточного кальция, так как увеличение кальция и связывание кальмодулина (белка, участвующего в гомеостазе кальция) с hVPS34 принципиально важно для лейцин-индуцированной активации mTOR.

Белок SHP-2 (тирозин фосфатазы) имеет решающее значение для синтеза мышечного белка и, как известно, ограничивает рост мышц в периоды питательной депривации. Он подает сигнал киназе рибосомного белка S6 (S6K1) посредством мобилизации внутриклеточного кальция в наивысшей точке фосфолипазы C гамма-4 и работает с помощью белка Rheb, который стимулирует mTOR. Белки Rheb, как известно, являются положительными модуляторами функций mTOR. Лейцин и/или его метаболиты увеличивают внутриклеточный кальций, что похоже на мышечные сокращения.

Увеличение кальция, в свою очередь, активирует белки типа mTOR, которые затем индуцируют синтез протеина в мышцах. В отличие от мышечных сокращений, данный процесс происходит во всех клетках и не только в скелетных мышцах. Другими словами, процесс происходит таким образом: SHP-2 (в настоящее время – самый дальний белок в цепи) → мобилизация кальция → связывание hVPS34 с кальмодулином → активация mTORC1 (возможно, с помощью Rheb) → активация S6K1 → синтез мышечного белка

Черная сторона лейцина.

Важно понять, что гиперстимуляция mTORC вызывается не одним лейцином, а комплеком проблем (гиперкалорийность, избыток сахара, общий избыток белка, избыток омега-6, постоянные перекусы и др.). Особенность западной диеты заключается в том, что мы едим просто невероятные количества лейцина как с животной, так и с растительной пищей. Главные источники лейцина: мясо, молочные продукты (включая сыр), бобовые (соя), пшеница, арахис. Знакомо? Зачастую питание многих людей и состоит из мяса, злаков и молочки.

При постоянной стимуляции роста и активности mTORC клетки перестают ремонтировать себя, нарушается процесс аутофагии. Оказалось, что аминокислота метионин, а также аминокислоты БЦАА (лейцин, изолейцин и валин) стимулируют активность сигнального белка — киназы mTOR. Активность белка киназы mTOR сокращает продолжительность жизни из-за того, что этот белок активизирует процессы синтеза новых белков в оргазме в ущерб «утилизации» старых, которые просто засоряют клетку. Повышенное содержание старых повреждённых белков приводит к ускоренному старению клеток организма.

Кроме того, как я уже писал выше, при пищевой стимуляции идет стимуляция mTORC везде, включая жировые клетки. Так, лейцин - это самый сильный стимулятор накопления жира в жировых клетках (рисунок ниже).

Постоянная чрезмерная стимуляция mTORС1 способствует появлению хронических болезней цивилизации. Эпидемические акне это видимый индикатор избытка mTORС1, сигнализирующий об увеличении риска следующих болезней цивилизации: раннее половое созревание, раннее появление акне, чрезмерная угревая сыпь (акне), ожирение, диабет 2 типа, рак, нейродегенерация.

До недавнего времени между употреблением молока и молочных продуктов и патогенезом акне признавалась довольно слабая связь, но сейчас, однако, есть существенные эпидемиологические и биохимические доказательства, подтверждающие воздействие молока и молочных продуктов на увеличение insulin-/IGF-1 и усугубление акне.

В связи с этим, страшно осознавать, что более чем 85% подростков западных стран демонстрируют акне, тогда как представители незападного населения, например Китавы, не подвержены влиянию этого заболевания и других mTORC1-зависимых болезней цивилизации. Это предполагает, что большая часть населения Запада живет с излишне активированными сигналами mTORC1, главным патогенным фактором, который, вероятно, может подготовить почву для развития других более серьезных болезней цивилизации. Это открытие приводит к выводу, что акне может быть показателем увеличения риска заболеть раком груди.

Дерматологам, консультирующим пациентов с проблемой акне, особенно молодых, следует не только обращать внимание на лечение кожных патологий, но и консультировать о способах скорректировать несвойственную mTORC1-стимуляцию, усугубляемую западной диетой. Это необходимо, чтобы предупредить более серьезные mTORC1-зависимые болезни цивилизации, такие как ожирение, диабет и рак. Комплексная диетическая стратегия для лечения акне может быть достигнута только путем увеличения потребления овощей и фруктов, и снижением количества пищи животного происхождения.

Исследование проводилось в США под руководством Вальтера Лонго. Результаты исследования показаны в 2014 году. Так среди людей от 50 до 65 лет регулярное употребление в пищу большого объёма коровьего молока и молочных продуктов приводило к росту общей смертности и росту опухолевых заболеваний.

Ограничение продуктов, богатых лейцин, оказывает действие, равносильное лечебному голоданию и на низкокалорийной питание, и срок жизни их вырастал. Но другую группу дрозофил также сажали на низкокалорийное питание, но при этом в их питание добавляли аминокислоты БЦАА, либо одну аминокислоту метионин. У таких дрозофил продления жизни не наблюдалось. Было обнаружено, что не низкое потребление калорий вызывает продление жизни, а более низкое потребление сахаросодержащих продуктов + более низкое потребление БЦАА аминокислот и метионина. В последствии эти же результаты подтвердились и на млекопитающих. Метионин и БЦАА — это аминокислоты, которые входят в состав, прежде всего животного белка. Особенно много его в коровьем молоке и молочных продуктах.

таб. 100 мг: 20 шт.
Рег. №: 07/02/1039 от 27.02.2007 - Аннулированное

Таблетки белого или слегка желтоватого цвета, плоскоцилиндрические, с риской и фаской.

Вспомогательные вещества: лактоза (391.5 мг), метилцеллюлоза, кальция стеарат, стеариновая кислота, кремния диоксид коллоидный.

10 шт. - упаковки контурные ячейковые (2) - пачки картонные.
10 шт. - упаковки безъячейковые контурные (2) - пачки картонные.

Описание лекарственного препарата ЛЕЙЦИН основано на официально утвержденной инструкции по применению препарата и сделано в 2009 году. Дата обновления: 10.03.2009 г.


Фармакологическое действие

Лейцин оказывает иммуностимулирующее и анаболическое действие. Активирует клеточный и гуморальный иммунитет, повышает функцию фагоцитов, активирует процессы биосинтеза аминокислот, их предшественников и метаболитов. Уменьшает нарушения обмена веществ, возникающие при стрессе. Является исходным веществом для синтеза белка и эндогенных биорегуляторов.

Фармакокинетика

При приеме внутрь препарат хорошо всасывается из ЖКТ (биодоступность составляет более 96%) и равномерно распределяется в тканях. Избыток лейцина выводится почками в неизмененном виде.

Показания к применению

  • в качестве иммуностимулятора и корректора аминокислотного дисбаланса у онкологических больных при различных методах специфического лечения, в предоперационной медикаментозной подготовке, при проведении полихимиотерапии, для устранения цитостатического действия химиопрепаратов;
  • для профилактики и коррекции иммунодефицитных состояний при радио- и химиотерапии;
  • предоперационная и послеоперационная профилактика инфекционных осложнений;
  • базисная терапия больных с иммунодефицитами;
  • предупреждение иммунодефицита при длительном лечении антибиотиками, частых простудных заболеваниях.

Режим дозирования

Назначают внутрь по 100 мг/сут. Продолжительность курса - не менее 1 недели и не более 8 недель. Повторные курсы при необходимости могут проводиться через 2-3 недели.

При предоперационной подготовке - 200 мг 3 раза/сут в течение 1 недели до операции, в послеоперационном периоде - по 100-200 мг 3 раза/сут в течение 2-4 недель.

При радио- и химиотерапии назначают курсами по 2-4 недели в дозах 100-200 мг 2-3 раза/сут.

Детям в возрасте от 1 года до 6 лет - по 50-100 мг; в возрасте 6-12 лет - по 100-200 мг 2-3 раза/сут.

Лейцин активно используется в БАДах для спортсменов и бодибилдеров, а также в медицинских препаратах. Это вещество способствует наращиванию мышц и сжиганию жира, что положительно влияет на фигуру. При полноценном питании его количество чаще всего достаточно для обычного человека. Рассмотрим подробнее важность этой аминокислоты для организма.

Характеристики и влияние

Лейцин является одной из незаменимых для человеческого организма аминокислот, входит в состав белков, поступает только с пищей. Эта алифатическая аминокислота в живых клетках находится в виде L-оптического изомера и имеет формулу HO2CCH(NH2)CH2CH(CH3)2.

В чистом виде представляет собой бесцветный порошок, плохо растворяющийся в воде, зато хорошо растворимый в щелочной среде и кислотах.

Является наиболее важной среди трёх существующих аминокислот с разветвленной цепью (есть ещё изолейцин и валин). Их ещё называют гидрофобными. Особую популярность ей придаёт способность наращивать мышцы.

Переработка лейцина производится печенью, но в большей мере жировой и мышечной тканью. Эта незаменимая аминокислота стимулирует синтез протеинов, и её приём способен замедлять деградацию мышц, является катализатором для роста мышечной массы и своеобразной страховкой от их повреждения.

Ко всему прочему лейцин даёт больше энергии организму, чем глюкоза, и способствует её усвоению печенью. Он наиболее сильно среди всех аминокислот активизирует рапамицин киназу, регулирующую рост клеток у животных.

Знаете ли вы? Первым его получил французский химик и фармацевт Анри Браконно из мышц и шерсти животных в 1820 году. Сейчас качественный продукт синтезируют из растительного сырья (сои) или молочных белков. До 2010 года L-лейцин являлся пищевой добавкой Е 641 для усиления вкуса и запаха продуктов.

Биодоступность лейцина - более 96%. В его усвоении и переработке участвуют поджелудочная железа, печень, селезёнка, почки. Именно почками и выводится его избыток.

Основные функции и польза

Лейцин выполняет важные функции в организме:

  • способствует выработке инсулина;
  • участвует в обменных процессах белков и углеводов;
  • важен для роста и нормального развития мышц;
  • защищает мышечную ткань от распада и травм, заживляет раны;
  • энергетически эффективен для клеток организма;
  • поддерживает уровень серотонина;
  • принимает участие в синтезе протеина, гемоглобина.

Его польза для человеческого организма:

  • нормализует сахар в крови;
  • укрепляюще действует на иммунную систему;
  • способствует правильному развитию мышц;
  • нормализует функцию печени;
  • снижает риск ожирения;
  • уменьшает усталость и повышает работоспособность;
  • положительно влияет на состояние кожи, уменьшает проявления целлюлита и применяется в антивозрастных программах.

Лейцин использует медицина. Он улучшает клиническое состояние больных при голодании, онкологии, болезнях печени, после операции, травм, сепсиса.

Его прописывают онкобольным до и после операций, химиотерапии и другого специфического лечения для коррекции дисбаланса аминокислот.
Применяется при лечении анемии, дистрофии мышц, диабета, синдрома Менкеса, полиомиелита, почечной недостаточности, цирроза печени и других ее болезней.

Продукты - источники лейцина

Большое количество лейцина содержится в продуктах животного происхождения, но и вегетарианцам есть откуда его брать.

Знаете ли вы? Алкоголь препятствует усвоению лейцина.


  • концентрат соевого белка - 4,917 г;
  • яичный порошок - 3,77 г;
  • сыр пармезан - 3,45 г;
  • икра красная - 3,06 г;
  • соевые бобы - 2,75 г;
  • сухое молоко - 2,445 г;
  • сыр «Пошехонский» - 1,96 г;
  • - 1,92 г;
  • сыр «Чеддер», обезжиренный творог - 1,85 г;
  • сыр «Швейцарский» - 1,84 г;
  • арахис - 1,763 г;
  • бобы фасоли - 1,74 г;
  • горбуша - 1,71 г;
  • горох - 1,65 г;
  • морской окунь, сельдь, скумбрия - 1,6 г;
  • мясо индейки - 1,59 г;
  • фисташки - 1,542 г;
  • пшено - 1,53 г;
  • ставрида - 1,54 г;
  • сыр «Рокфор» - 1,52 г;
  • говядина - 1,48 г;
  • - 1,47 г;
  • курица - 1,41 г;
  • судак, щука - 1,4 г;
  • семена подсолнуха - 1,343 г;
  • - 1,338 г;
  • треска, минтай - 1,3 г;
  • миндаль - 1,28 г;
  • - 1,17 г;
  • баранина - 1,12 г;
  • крупа кукурузная - 1,1 г;
  • яйцо куриное - 1,08 г;
  • свинина нежирная - 1,07 г;
  • фундук - 1,05 г.

Так что желающим нарастить мышцы или детям (для роста) нужно включать в рацион сыры, орешки (особенно арахис), бобовые, морепродукты и мясо.

В овощах и фруктах, грибах доля лейцина очень незначительна.

Суточная потребность и норма

Для здорового взрослого человека суточная норма лейцина составит 4-6 грамм. Для покрытия этой потребности человеку достаточно съедать каждый день 3 яйца, 200 грамм говядины, 100 грамм творога, выпивать стакан молока или кефира.

Важно! При повышенном холестерине не рекомендуется употреблять молокопродукты жирностью выше 5%, жирное и жареное мясо (особенно красное). Содержание холестерина в желтках куриных яиц тоже достаточно высоко. Лучше обратить внимание на орехи (арахис), семечки, бобовые и некоторые виды круп (пшено и кукурузная), морепродукты.


Для бодибилдеров и спортсменов эта норма больше в два раза.

Для работника физического труда и при частых силовых нагрузках она также будет выше.

Суточная потребность для растущего организма детей рассчитывается из нормы этой аминокислоты 0,15 грамм на каждый килограмм веса ребёнка.

Это важно учитывать при составлении его рациона.

О переизбытке и недостатке

Лейцин способствует снижению веса и формированию красивого тела, но не стоит им сильно увлекаться.

Даже такая важная и незаменимая для живого организма аминокислота хороша и полезна, когда при её употреблении придерживаются норм.

Избыток

Избыточное потребление лейцина приводит к следующим последствиям:

  • нервные расстройства (депрессия, сильная сонливость, головные боли);
  • нарушение работы печени;
  • атрофия мышц;
  • гипогликемия (низкий уровень глюкозы в крови);
  • аллергические реакции.

Важно! Людям, принимающим препараты с лейцином или занимающимся физическими нагрузками, следует знать признаки гипогликемии: тремор мышц, высокое давление и аритмия, возбужденные нервные реакции, неадекватное поведение, мигрень и головокружение, сонливость, нарушенная координация и дезориентация, слабость и другие.


Нехватка

Дефицит лейцина особенно опасен для растущего организма ребёнка, поскольку замедляет его рост и физическое развитие. Поэтому для детей так важно организовать правильное питание. Его недостаток у взрослых людей может привести к ожирению и различным психическим заболеваниям.

Ко всему прочему, это может привести к дисфункциям печени, почек, щитовидной железы.

Нехватка этой аминокислоты также может привести к гипогликемии и сопутствующим негативным проявлениям.

Взаимодействие с другими веществами

Никаких негативных взаимодействий с другими веществами у лейцина не обнаружено. Взаимодействуя с глюкозой, снижает её уровень в крови и влияет на активность поджелудочной железы.
Вместе с ресвератролом ведёт к уменьшению жировых отложений и веса. Существует гипотеза о его синергии с цитруллином, способствующей наращиванию мышечной массы.

Роль в спорте

Поскольку потребность в лейцине при физических нагрузках сильно возрастает, эту аминокислоту часто используют в БАДах для спортсменов и активно употребляют в бодибилдинге, армрестлинге.

Производители биодобавок для спортсменов сначала выпускали их с такими пропорциями лейцина, изолейцина, валина - 2:1:1.

Но сейчас существуют доказательства, что гораздо рациональнее использовать только один лейцин, так как он наиболее сильно влияет на рапамицин киназу и имеет самый высокий анаболический эффект.
Эта аминокислота положительно влияет на качество мышечной ткани, способствует заживлению при спортивных травмах, а её недостаток вызывает высокую утомляемость. Ко всему прочему, она способствует сжиганию жира.

У человека, занимающегося активными нагрузками и поставившего себе цель нарастить больше мышц, не всегда получается брать эту аминокислоту в достаточном количестве из пищи.

Знаете ли вы? Лучше всего лейцин принимать перед тренировками.

О противопоказаниях и мерах предосторожности

Лейцин противопоказан при наследственных заболеваниях, связанных с нарушением его обмена:

  • лейциноз (болезнь мочи с запахом кленового сиропа);
  • изовалератацидемия (болезнь с запахом потных ног).

При этих редких генетических нарушениях из питания полностью исключаются продукты, содержащие гидрофобные аминокислоты. Обычно такие заболевания выявляют уже в первые недели жизни.

Больным, нуждающимся в терапии этим веществом, препараты и дозы выписывает врач.

Спортсменам препараты и дозы с этой аминокислотой рекомендует опытный тренер. Но и им желательно получить консультацию врача и следить за своим состоянием.
Нормальное существование человека невозможно без лейцина. Его недостаток может вызвать замедленное физическое развитие у детей.

В продуктах питания его достаточно, но при высоких физических нагрузках норма лейцина может удвоиться, и препараты с этой незаменимой аминокислотой часто принимают спортсмены.

Переизбыток этого вещества вреден, поэтому при приёме нужно проконсультироваться с врачом.

L-Лейцин (C 6 H 13 NO 2) одна из трех незаменимых аминокислот с разветвленной цепью. Другие две это L-Валин и L-Изолейцин. Лейцин не может производиться организмом и должен поступать с пищей или пищевыми добавками. Его можно найти в орехах, коричневом рисе и продуктах из цельного зерна. Лейцин составляет около восьми процентов всех аминокислот в организме и это четвертая аминокислота по концентрации в мышечных тканях.

Отличительной особенностью Лейцина является то, что эта аминокислота играет важную в синтезе белка. Термин «синтез белка» можно встретить довольно часто, даже в обычных статях, касающихся формирования мышечной массы. Однако, что представляет собой этот процесс? Проще говоря, это образование новых белков, которое происходит в скелетных мышцах нашего организма.

Если это происходит довольно интенсивно, мы говорим о гипертрофии скелетных мышц (их росте), т.е. о процессе увеличения нашей мышечной массы. Цель этой статьи - осветить влияние , поступающих с пищей, в частности, лейцина, на синтез белка в скелетных мышцах после выполнения физических упражнений.

Предпосылки

Разные виды физических упражнений по-разному влияют на белковый обмен в мышцах.

  • Упражнения на выносливость влияют на белковый обмен в скелетных мышцах следующим образом: снижают анаболические процессы (образование новых белков) и повышают процесс катаболизма (распада белков) вызывая миопатию - уменьшение мышечной массы.
  • Упражнения на массу являются уникальными в сравнении с другими видами физических упражнений, поскольку в момент выполнения этих упражнений наряду с повышением процесса распада белков в мышцах происходит и эффективное повышение синтеза белков.

Общим эффектом в обоих случаях является отрицательный белковый баланс (общий распад белков). Таким образом, в краткосрочной перспективе физические упражнения вызывают белковый катаболизм. Однако в долгосрочной перспективе физические упражнения способствуют поддержанию или увеличению мышечной массы.

Лейцин

Установлено, что с целью соблюдения положительного белкового баланса после физических тренировок необходимо употреблять белки, в частности, аминокислоту лейцин. До тех пор пока с пищей не будет поступать лейцин, белковый баланс будет оставаться отрицательным.

Лейцин является одной из трех и является уникальной аминокислотой, которая способствует синтезу белков в мышцах. На самом же деле, лейцин оказывает приблизительно в 10 раз большее влияние на образование новых белков, чем любая другая аминокислота!

Так как же лейцин способствует синтезу белков в мышцах? Во-первых, мы должны глубже узнать о процессах в организме, которые активирует лейцин. Установлено, что лейцин активизирует основной анаболический рецептор, известный под названием мишень рапамицина в клетках млекопитающих (белок mTOR). mTOR является аминокислотным рецептором клетки, чувствительным к концентрации лейцина.

Снижение концентрации лейцина передает mTOR сигнал о том, что в настоящее время с пищей не поступило достаточного количества для синтеза новых белков в мышцах, и mTOR дезактивируется. По мере увеличения концентрации лейцина mTOR передается сигнал о том, что имеется достаточное количество протеинов для синтеза новых мышечных белков, и mTOR активируется.

Активация mTOR

Несмотря на то, что научные сотрудники до конца не уверены в том, как именно лейцин активизирует mTOR, было установлено, что mTOR чувствителен к концентрации лейцина и уровню (снижение уровня АТФ также дезактивирует mTOR).

Активация mTOR тесно связана с повышенным синтезом белка. mTOR способствует синтезу белка посредством двух различных механизмов.

Механизм № 1

Фосфорилирование связывающего белка 4E-BP1, что приводит к его инактивации. Будучи активным, белок 4E-BP1 связывается с белком eIF4E (инициирующим фактором), не давая ему связаться со следующим белком eIF4G для формирования комплекса eIF4E*eIF4G.

Формирование этого комплекса является важным фактором для запуска процесса синтеза белка.

Проще говоря, mTOR способствует запуску процесса синтеза белка путем инактивации 4E-BP1, позволяя, таким образом сформироваться комплексу eIF4E*eIF4G, который является важным фактором для запуска процесса синтеза белка.

Можно было бы объяснить и более детально, однако, это лишнее. Данная схема довольно проста для понимания процесса.

Механизм № 2

mTOR активирует рибосомный белок S6 (известный как rpS6 или p70 S6). Белок rpS6 увеличивает синтез компонентов цепи синтеза белка. Таким образом, mTOR не только способствует синтезу белка, но и повышает потенциал его синтеза.

По аналогии, чтобы помочь понять этот процесс, приведем пример подрядчика в строительстве нового небоскреба.

mTOR - это подрядная организация. Белок, который вы пытаетесь синтезировать, - это небоскреб. Компоненты цепи синтеза белка - это машины (бульдозеры, краны и т.д.), которые вы используете для постройки здания. А лейцин - это средства, необходимые для осуществления проектных работ.

В случае достаточного количества наличных средств (увеличение концентрации лейцина), подрядная организация может не только начать строить небоскреб (синтезировать белок в мышцах), но также и купить больше машин (увеличить количество компонентов, необходимых для синтеза). Это в свою очередь увеличит мощность и скорость, с которой будет возводиться небоскреб (синтезируемый в мышцах белок).

Лейцин также способствует синтезу белка путем повышение доступности белка eIF4G для образования комплекса eIF4G*eIF4E за счет фосфорилирования eIF4G.

Говоря простым языком

Давайте оставим в сторону перлы науки и поговорим о том, что мы узнали из вышесказанного. Насколько полезно дополнительно употреблять в пищу лейцин? Или, возможно, достаточно перейти на диету с высоким содержанием белка? Существует ряд доказательств в пользу приема лейцина, даже если употреблять с пищей достаточное количество белка.

Недавно ученые провели эксперимент, в котором три группы людей выполняли упражнения на массу в течение сорока пяти минут, по истечении которых одной группе людей дали пищу, содержащую исключительно , другой - углеводы и приблизительно 30 г белка, а третьей - углеводы, белок и лейцин.

Было обнаружено, что в группе людей, принимавших пищу, содержащую углеводы, белки и лейцин, белковый катаболизм снизился, а синтез белков в мышцах увеличился в большей степени, чем в группе людей, принимавших пищу, содержащую углеводы и белки, и увеличился в еще большей степени, чем в группе людей, принимавших пищу, содержащую исключительно углеводы.

Возможное объяснение этих результатов связано с пиковым повышением концентрации лейцина в плазме крови, которую может достичь свободная форма принятого с пищей лейцина. Для общего количества белка потребуется достаточно много времени, чтобы переместиться из желудка в тонкую кишку и, наконец, попасть в кровообращение. Таким образом, концентрация белков в плазме крови повышается медленно и платообразно.

Даже при быстром переваривании, например , лейцину сыворотки может потребоваться несколько часов, для того чтобы освободиться от белка и абсорбироваться в кровообращение. В связи с этим концентрация лейцина в плазме крови никогда не достигает высокого уровня.

Однако при употреблении пищи, содержащей чистый лейцин, он будет быстро всасывается в кровь, достигнув таким образом своей пиковой концентрации в плазме крови, что вызовет резкое увеличение уровня внутриклеточного лейцина и активизацию выше упомянутой анаболической цепи.

Заключение

В заключение мы приходим к очевидному факту о том, что лейцин способствует синтезу белка за счет увеличения активности mTOR и фосфорилирования белка eIF4G.

Лейцин оказывает на синтез белка гораздо большее стимулирующее влияние, чем любая другая аминокислота. Установлено, что синтез белка увеличивается также и в ответ на относительно небольшой дозы лейцина в пище.

Было также обнаружено, что добавление лейцина в пищу, содержащую большое количество белка, гораздо больше способствует процессу синтеза белка в мышцах.

В любом случае еще предстоит определить, насколько полезно употреблять лейцин спортсменам и бодибилдерам в дополнение к пище с высоким содержанием белка для дальнейшего увеличения мышечной массы в долгосрочной перспективе.